∫(х³/(4-х²)dx=?
Подынтегральное выражение можно представить в виде
х³/(4-х²)=(4х/(4-х²))-х,
Действительно, если почленно уголком разделим х³ на (4-х²), в частном будет -х, в остатке 4х, поэтому дробь х³/(4-х²)=(4х/(4-х²))-х, а интеграл тогда разобьется на два таких интеграла ∫((х³/(4-х²))dх= ∫(4х/(4-х²))dх +∫(-х)dх = -2∫(-2х)dх /(4-х²)-∫хdх =-2*∫ d(4-х²)/(4-х²)-∫х dх =-2㏑I(4-х²)I -x²/2+c, где с=const
ответ ∫(х³/(4-х²)dx=-2㏑I(4-х²)I -(x²/2)+c, где с=const
2(х+1)²=х¹ 2(х-1)²=х¹
2(х²+2х+1)=х 2(х²-2х+1)=х
2х²+3х+2=0 2х²-5х+2=0
D=9-16=-5 D=25-16=9
решений нет x₁=(5+3)/4=2
x₂=(5-3)/4=1/2