М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
9Аноним345
9Аноним345
27.01.2023 00:45 •  Алгебра

(3a2−7b2)⋅(3a2+7b2) выбери правильный ответ #9a4+42a2b2+49b4 #9a4−49b4 #9a4−49b2 #3a4−7b4 #9a4−42a2b2+49b4 #9a4−42a2b2−49b4

👇
Ответ:
PRI3E
PRI3E
27.01.2023
Окончательный ответ
9a^4-49b^4
4,8(52 оценок)
Открыть все ответы
Ответ:
лисичка73
лисичка73
27.01.2023
3x+2y-6=0  чтобы найти  точку пересечения с осью абсцисс, нужно y приравнять к нулю в уравнении и выразить х, -3х+2*0-6=0 х=-2 значит точка пересечения с осью абсцисс (ох) это точка (-2,0) чтобы найти точку пересеч. с осью ординат нужно х приравнять к нулю и найти у -3*0+2y-6=0  y=3 значит точка пересечения с оу точка (0,3) если точка к принадлежит графику, значит при подстановки туда координат точки к мы получим тождество, т.е. первую координату точки к ставим вместо х, а вторую координату вместо у -3*1/3   +2*3,5-6=0  получили тожедство 0=0, значит точка принадлежит.
4,5(31 оценок)
Ответ:
emir07
emir07
27.01.2023
1) Это верно даже для 3-х чисел...))
    Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные.
То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.

Для чего нам это нужно? - С четными все понятно:
        2n - первое число, 2(n+k) - второе.
Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k)
Результатом умножения на 2 любого целого числа будет четное число.

Теперь рассмотрим 2 нечетных числа:
        2n+1 - первое число, 2(n+k)+1 -второе число
Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.

Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.

2) Нет, нельзя.
Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части:
1. сумма всех максимальных чисел в каждой группе и
2. сумма всех остальных по всем группам.

Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
4,4(7 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ