3x+2y-6=0 чтобы найти точку пересечения с осью абсцисс, нужно y приравнять к нулю в уравнении и выразить х, -3х+2*0-6=0 х=-2 значит точка пересечения с осью абсцисс (ох) это точка (-2,0) чтобы найти точку пересеч. с осью ординат нужно х приравнять к нулю и найти у -3*0+2y-6=0 y=3 значит точка пересечения с оу точка (0,3) если точка к принадлежит графику, значит при подстановки туда координат точки к мы получим тождество, т.е. первую координату точки к ставим вместо х, а вторую координату вместо у -3*1/3 +2*3,5-6=0 получили тожедство 0=0, значит точка принадлежит.
1) Это верно даже для 3-х чисел...)) Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные. То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.
Для чего нам это нужно? - С четными все понятно: 2n - первое число, 2(n+k) - второе. Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k) Результатом умножения на 2 любого целого числа будет четное число.
Теперь рассмотрим 2 нечетных числа: 2n+1 - первое число, 2(n+k)+1 -второе число Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.
Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.
2) Нет, нельзя. Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части: 1. сумма всех максимальных чисел в каждой группе и 2. сумма всех остальных по всем группам.
Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
9a^4-49b^4