М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nastasiia1989
nastasiia1989
08.06.2020 01:30 •  Алгебра

Доказать, что при любых a,b,c имеет корни уравнение: (х-а)(х-b)+(x-a)(x-c)+(x-b)(x-c)=0

👇
Ответ:
vysochina67
vysochina67
08.06.2020
Можно, например, использовать непрерывность функции
f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c)
и исследовать её поведение.

а) при x→±∞: y→±∞
б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c
f(x=a) = (a−b)(a−c)
f(x=b) = (b−a)(b−c)
f(x=c) = (c−a)(c−b)
б1) пусть сначала все числа a, b, c различны: a<b<c
f(x=a) > 0
f(x=b) < 0
f(x=c) > 0

Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).

б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.

Утверждение доказано.
4,4(53 оценок)
Открыть все ответы
Ответ:
На основании задания составляем равенства:
a₁q³ - a₁ = 26,       a₁(q³ - 1) = 26.      a₁(q - 1)(q² + q + 1) = 26, 
a₁q⁴ - a₁q² = 78,    a₁q² (q² - 1) =78,  a₁q² (q - 1)(q + 1) =78.
Разделим второе равенство на первое, произведя сокращение на a₁(q - 1), с учётом того, что знаменатель прогрессии q не может быть равен 1, иначе разность между любыми членами равна 0.
Получаем  (q²(q + 1))/(q² + q + 1) = 3.
Приведя подобные, получаем кубическое уравнение:
q³ - 2q² - 3q - 3 = 0.
Решение его с использованием формулы Кардано приведено в приложении: q = 3,220693.
Находим первый член: а₁ = 26 /(q³ - 1) =  0,802276.
Сумма первых шести членов этой прогрессии равна:
S6 = (a₆q - a₁)/(q - 1) =  402,8485.

Для проверки даются члены этой прогрессии.
0,802276     2,583885     8,321898      26,80228      86,32189      278,0163.
4,5(70 оценок)
Ответ:
igorrusinov19
igorrusinov19
08.06.2020
А) q=12/-3=-4
б) c3=c2*q=12*(-4)=-48
в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n
г) c6=3/4*(-4)^6=3*4^5=3*1024=3072
д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей.
e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4
ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии. 

 
4,4(88 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ