30б скоро в школу 7 класс 1)(х^6-3x+9)(x^3+3) 2)(n +1/2)(n^2-1/4n+1/4) 3)(1/2a-1/3b)(1/4a^2+1/6ab+1/9b^2) 4)(1/4y^2+yz+4z^2)(1/2y-2z) 5)(3/4x^4-2/3y^2)(9/16x^8+1/2x^4y^2+4/9y^4) 6)(25/36a^6-a^3b^3+36/25b^6)(5/6a^3+6/5b^3)
Нужно использовать неравенство треугольника: треугольник существует, если любая сторона меньше суммы двух других сторон: АВ<АС+СВ, AC<AB+BC, BC<AB+AC. 1) 15; 25; 10: 15<25+10, 15<35; 25<15+10, 25<25 - неверное неравенство, значит такой треугольник нельзя построить. 2) 33; 19; 12: 33<19+12, 33<31 - неверное неравенство, значит такой треугольник нельзя построить. 3) 14; 37; 45: 14<37+45, 14<82; 37<14+45, 37<59; 45<14+37, 45<51 - такой треугольник можно построить. У треугольника против большей стороны лежит больший угол, а против меньшей стороны - меньший угол, значит, напротив стороны 45 будет лежать больший угол, а напротив стороны 14 - меньший угол.
1. Метод математической индукции. Проверим для n=1 n^3+3n^2+5n+3=12 делится на 3, утверждение верно для n=1 n^3+3n^3+5n+3=12 делится на 3, утверждение верно для n=1 Пусть утверждение верно для всех n≤k, докажем его для n=k+1 (k+1)^3+3(k+1)^2+5(k+1)+3= =k^3+3k^2+3k+1+3*(k^2+2k+1)+5k+5+3= =k^3+3k^2+5k+3+3k^2+9k+9= =(k^3+3k^2+5k+3)+3(k^2+3k+3) (k^3+3k^2+5k+3) делится на 3 по предположению индукции, 3(k^2+3k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n. Для тройки: (k+1)^3+3(k+1)^3+5(k+1)+3= =4(k^3+3k^3+3k+1)+5k+5+3=(4k^3+5k+3)+3*(4k^2+4k+3) (4k^3+5k+3) делится на 3 по предположению индукции, 3*(4k^2+4k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.