1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое