1. ОТВЕТ: например, 
, поскольку
.
Общий вид первообразных - 
2. Докажем, что
:
.
Что и требовалось доказать.
3. Общий вид первообразных функции
-
, где
- некоторое постоянное число. Если график первообразной проходит через точку
, то это значит, что при подстановке
получим верное равенство:

Искомая первообразная - 
ОТВЕТ: Y = x²/2 + 3.
4. Графики функции - во вложении 1. Площадь заданной фигуры заштрихована красным.
Поскольку график функции y = 4x - x² на отрезке [0; 2] располагается как минимум не ниже графика функции y = x² (выполняется неравенство 4x - x² ≥ x²), то площадь будет иметь вид

ОТВЕТ:
кв. ед.
5. Графики - во вложении 2. Площадь заданной фигуры заштрихована красным.
Поскольку на отрезке (-2; 2) график функции y = x² - 1 располагается выше графика функции y = x² - 4 (выполняется равенство x² - 1 > x² - 4), то площадь будет иметь вид
![S=|\int\limits^2_{-2} {[x^2-1-(x^2-4)]} \, dx |=\int\limits^2_{-2} {3} \, dx= (3x)|_{-2}^2=3\cdot2-[3\cdot(-2)]=6+6=12](/tpl/images/1179/2526/6e4c7.png)
ОТВЕТ: 12 кв. ед.
6. Объем выполненной работы A(t) с момента
по момент
согласно механическому смыслу определенного интеграла есть значение выражения интеграла

Имеем:

ОТВЕТ: ≈ 760.

Воспользуемся формулой
:

Возведем обе части в квадрат:

Рассмотрим 3 случая :
1.

----------------------

Мы знаем, что любое число(кроме 0) в любой степени больше нуля, то есть 2+а > 0 => a>-2

Так же 2-а уже должно быть меньше или равно нулю:
2-a ≤ 0 => a ≥ 2
Найдем пересечение => a ≥ 2
2.
По тому же принципу :

Найдем пересечение => a ≤-2
3.

----------------------------------------------------------------------
Объединим три ответа => a Є (-∞ ; -2] U [2 ; +∞)
ответ : a Є (-∞ ; -2] U [2 ; +∞) U {0}
P.S это одно из возможных решений, возможно вы найдете и по проще)
3х-5х+3х+1=3/5 + 4х
3х-5х+3х-4х=3/5-1
-9х= -2/5
х= -2/5 : ( -9/1)
х=-2/5 * (-1/9)
х= 2/45
ответ: х=2/45