Если это уравнение имеет рациональный, но не целый корень, то этот корень всегда можно записать в виде m/n, при этом m,n - взаимно просты и n>1. Тогда m²/n²+pm/n+q=0. Умножим это равенство на n и перенесем слагаемые в правую часть. Получим m²/n=-qn-pm, т.е. число m²/n - целое. Поэтому, если r - это какой-нибудь простой делитель числа n, то r делит m², а значит r делит m. Т.е., получается, что m и n не взаимно просты. Противоречие. Значит n=1, т.е. m/n - целое.
если их раздали по одной, то в классе 120 человек, если по 2, то 120: 2=60 человек, если по 3, то 120: 3=40 человек, если по 4, то 120: 4=30, но по условию - должно быть более 30. значит, 120 или 60 или 40. 2. рассмотрим конфеты. если 120 человек, то 280: 120=2,3 - число не натуральное, чего быть не может (конфеты ломать не будут), 120 - не подходит. если 60 человек, то, аналогично, не подходит. если 40 человек, то 280: 40=7 - конфет. подходит. 3. рассмотрим орехи. 320: 40=8 - орехов. подходит. вывод: 40 учеников в первом классе.
Тогда m²/n²+pm/n+q=0. Умножим это равенство на n и перенесем слагаемые в правую часть. Получим m²/n=-qn-pm, т.е. число m²/n - целое. Поэтому, если r - это какой-нибудь простой делитель числа n, то r делит m², а значит r делит m. Т.е., получается, что m и n не взаимно просты. Противоречие. Значит n=1, т.е. m/n - целое.