Интегралы очень простые, тут и решать нечего. Я понимаю, если были бы сложные, там с заменой или с решением по частям. Но тут решать то: Разность интеграла есть разность интегралов. То есть каждую часть ты берешь и интегрируешь, далее подставляешь границы. Ну я в общем все реши, держи:
__________________________________________
Там понятно, что у каждого границы от 1 до 2, поэтому я не писал. Далее находим их значения:
________________________________________ Далее подставляем границы и получаем: Но я подумал, желательно тебе расписать еще так: Так будет легче подставлять границы.
Докажем по индукции, что 24^n - 1 делится на 23 при всех натуральных значениях n. База. n = 1: 24^1 - 1 = 24 - 1 = 23 делится на 23. Переход. Пусть это выполняется при некотором n = k, докажем, что тогда выполняется и при n = k + 1. 24^(k + 1) - 1 = 24 * 24^k - 1 = 24 * (24^k - 1) + 24 - 1 = 24 * (24^k - 1) + 23 По предположению индукции 24^k - 1 делится на 23, тогда и вся сумма делится на 23, как и требовалось.
Итак, 24^n - 1 делится на 23, а так как должно получиться простое число, то оно равно 23. 24^n - 1 = 23 n = 1
по теореме виета с=(3+√2)(3-√2)=9-2=7
x1+x2=3+√2+3-√2=6 b=-6
x²-6x+7=0