Объяснение:
1)x4 + 13x2 + 36 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
y2 + 13y + 36 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 132 - 4·1·36 = 169 - 144 = 25
y1 = -13 - √25 = -9
2·1
y2 = -13 + √25 = -4
2·1
x2 = -9
x2 = -4
2)25x4 + 16x2 + 9 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
25y2 + 16y + 9 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 162 - 4·25·9 = 256 - 900 = -644
ответ: так как дискриминант меньше нуля то корней нет
Иррациональное
Решение
:
1)x+5=0
x+(5-5)= -5
x= -5
2) x= _ 1
5
Объяснение:
а) (х + y)² = х² + 2хy + у² квадрат суммы
б) (5х – 3 )(5х + 3) = 25х² – 9 разность квадратов
в) (х – 2)( х² + 2х + 4) = х³ -8 разность кубов
г) (6х + у)² = 36 х² + 12хy + у² квадрат суммы
д) (х² – у )( х² + у) = х⁴ – y² разность квадратов
е) (х – 5)(х² + 5х + 25) = х³ – 125 разность кубов
3.Задание 2
Известно, что х² + 2хy + y² = 9, найдите:
а) (х + y)² = 9
б) (х + y)² – 5 = 4
в) (2х + 2y)² = 4х²+8ху+4у²=4(х² + 2хy + y²)=36
В примерах 1-5 раскройте скобки:
1. (х + 2у)²=х²+4ху+4у² квадрат суммы
2. (2а - З)²=4а²-12а+9 квадрат разности
3. (Зх - 5у²) (Зх + 5у²)=9х²-25у⁴ разность квадратов
4. (а + 2) (а² - 2а + 4)=а³+8 сумма кубов
5. (х + 1) (х² - х +1)=х³+1 сумма кубов