М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olesyasa1
olesyasa1
24.07.2022 18:13 •  Алгебра

^3корень3а(^3корень72а^10+^3корень21 1/3а) выражение

👇
Ответ:
Ярослав4497
Ярослав4497
24.07.2022
Начинаешь раскладывать цифры по твоей теореме а дальше ты поймёшь, у меня получилось 71
4,4(79 оценок)
Открыть все ответы
Ответ:
9872105
9872105
24.07.2022

1)

4^x - 14\cdot 2^x - 32 = 0\\\\(2^2)^x - 14\cdot 2^x - 32 = 0\\\\(2^x)^2 - 14\cdot 2^x - 32 = 0

Введём замену:  t = 2^x\ , t0\ .

t^2 - 14t - 32 = 0

По теореме Виета:

\begin{equation*}\begin{cases}t_{1}t_{2} = -32\\t_{1} + t_{2} = 14\end{cases}\end{equation*}\ \ \ \ \ \Big|\ \boxed{t = 16; t = -2}.

Но так как t 0 , то -2 не является решением этого уравнения. Выполняем обратную замену:

2^x = 16\\2^x = 2^4\\\\\boxed{\textbf{x = 4}}

ответ: 4.

2)

4^{x-3} = 32^x\\\\(2^2)^{x-3} = (2^5)^x\\\\2^{2(x-3)} = 2^{5x}\\\\2(x-3) = 5x\\\\2x - 6 - 5x = 0\\\\-3x = 6\\\\\boxed{\textbf{x = -2}}

ответ: -2.

3)

5^{2x} - 4\cdot 5^x - 5 = 0\\\\(5^x)^2 - 4\cdot 5^x - 5 = 0

Введём замену: t = 5^x\ ,\ t 0.

t^2 - 4t - 5 = 0

По теореме Виета:

\begin{equation*}\begin{cases}t_{1}t_{2} = -5\\t_{1}+t_{2} = 4\end{cases}\end{equation*}\ \ \ \ \ \Big|\ \boxed{t = 5; t = -1}

Но так как t 0 , то -1 не является решением этого уравнения. Выполняем обратную замену:

5^x = 5\\\\\boxed{\textbf{x = 1}}

ответ: 1.

4)

5^{x+2} + 11\cdot 5^x = 180\\\\5^x \cdot 5^2 + 11\cdot 5^x = 180\\\\5^x(25+11) = 180\\\\5^x\cdot 36 = 180\ \ \ \Big| :36\\\\5^x = 5\\\\\boxed{\textbf{x = 1}}

ответ: 1.

5)

9^{\sqrt{x-5}} - 27 = 6\cdot 3^{\sqrt{x-5}}

Для начала кое-что учтём: подкоренное выражение всегда неотрицательно. То есть:

x - 5 \geq 0\\x \geq 5

Продолжаем решение:

(3^2)^{\sqrt{x-5}} - 6\cdot 3^{\sqrt{x-5}} - 27 = 0\\\\(3^{\sqrt{x-5}})^2 - 6\cdot 3^{\sqrt{x-5}} - 27 = 0

Введём замену: t = 3^{\sqrt{x-5}}\ ,\ t0.

t^2 - 6t - 27 = 0

По теореме Виета:

\begin{equation*}\begin{cases}t_{1}t_{2} = -27\\t_{1}+t_{2} = 6\end{cases}\end{equation*}\ \ \ \ \ \Big|\ \boxed{t = 9; t = -3}

Но так как t 0 , то -3 не является решением этого уравнения. Выполняем обратную замену:

3^{\sqrt{x-5}} = 9\\\\3^{\sqrt{x-5}} = 3^2\\\\\sqrt{x-5} = 2\\\\x - 5 = 4\\\\\boxed{\textbf{x = 9}}

ответ: 9.

4,5(82 оценок)
Ответ:
nikitamakarov3
nikitamakarov3
24.07.2022

Решение системы уравнений (-1; 2)

Объяснение:

Решить систему уравнений:

(2х+7у)/4 + (3х-2у)/3 = 2/3

(3х+2у)/2 - (4х-6у)/7 = 39/14

Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:

3(2х+7у) + 4(3х-2у) = 4*2

7(3х+2у) - 2(4х-6у) = 39

Раскрыть скобки:

6х+21у+12х-8у=8

21х+14у-8х+12у=39

Привести подобные члены:

18х+13у=8

13х+26у=39

Умножить первое уравнение на -2, чтобы решить систему методом сложения.

Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.

-36х-26у= -16

13х+26у=39

Складываем уравнения:

-36х+13х-26у+26у= -16+39

-23х=23

х=23/-23

х= -1

Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:

13х+26у=39

26у=39-13х

26у=39-13*(-1)

26у=39+13

26у=52

у=52/26

у=2

Решение системы уравнений (-1; 2)

4,5(81 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ