Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
№1)Найти сумму первых членов геометрической прогрессии если:1)b1=5; g=-1; n=92) b1=2; g=2; n=53)b1=1/8; g=5; n=4 Sn=b1(1-q^n)/(1-q) если q<>1 b1- рервый член q- коэффициент 1. Sn=5(1-(-1)^9)/(1-(-1))=5*2/2=5 2. Sn=2(1-2^5)/(1-2)=2*(-31)/(-1)=62 3. Sn=1/8(1-5^4)/(1-5)=1/8*(-624)/(-4)=39/2 №2) Найти сумму чисел если её слогаемые являются последовательными членами геометрической прогрессии 1/4+1/8+1/16++1/512 b1=1/4 q=1/2 bn=1/512 Sn=(bn*q-b1)/(q-1)=(1/512*1/2-1/4)/(1/2-1)=(-255/1024)/-1/2=255/512
a²x² - 0.25y²=(ax-0.5y)(ax+0.5y)
16y²z² - 9a²n²=(4yz - 3an)(4yz+3an)
x²y² - 0.25p²q²=(xy-0.5pq)(xy+0.5pq)