Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?
При решении данной задачи лучше нарисовать дугу и делать на ней необходимые пометки (рисунок в приложении).
ответ: 9
2. Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.
Длину ширины MN нужно искать через формулу длины окружности. Так как MN - это полуокружность, то её длина равна πR.
\begin{gathered}\displaystyle \tt \pi R=5,2\\\displaystyle \tt 3,14\cdot R=5,2\\\displaystyle \tt R=5,1\div3,14 \displaystyle \tt MN=2\cdot\frac{520}{314}displaystyle \tt MN=\frac{520}{157}displaystyle \tt MN\approx3,31\end{gathered}
πR=5,2
3,14⋅R=5,2
R=5,1÷3,14
MN=2⋅
314
520
MN=
157
520
MN≈3,31
ответ: 3,3
3. Найдите примерную площадь участка внутри теплицы в квадратных метрах. ответ округлите до целых.
Участок внутри теплицы - прямоугольник, площадь которого равна MN*NP.
\displaystyle \tt S=\frac{520}{157}\cdot4,5=\frac{2340}{157}\approx14,9\approx15S=
157
520
⋅4,5=
157
2340
≈14,9≈15
ответ: 15
{x²-x-3>0
{2x²+x-3>0
{x²-2≠0
1)x²-x-3>0
D=1+12=13
x1=(1-√13)/2 U x2=(1+√13)/2
x<(1-√13)/2 U x>(1+√13)/2
2)2x²+x-3>0
D=1+24=25
x1=(-1-5)4=-1,5 U x=(-1+5)/4=1
x<-1,5 U x>1
3)x²-2≠0
x²≠2
x≠-√2 U x≠√2
x∈(-∞;-1,5) U ((1+√13)/2;∞)
log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4)
[(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4
[(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0
(8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0
(-x^4-4x³-4x²)/4(x²-2)²≥0
-x²(x²+4x+4)/4(x²-2)²≥0
x²(x+2)²/4(x²-2)²≤0
x=0∉ОДЗ
x=-2∉ОДЗ
ответ нет решения