в)число 4 является корнем уравнения x/2-x/4=1
Приведем к общему знаменателю левую часть:
2х-х/4=1
х/4=1
х=4 что и требовалось доказать
г)число -2 является корнем уравнения х-2(5х-1)-10х
Раскроем скобки
х-10х+2-10х=х+2 чтобы найти корень уравнения приравняем его к нулю
х+2=0
х=-2 что и требовалось доказать
Является ли корнем уравнением 2х(в квадрате)-5х-3=0
в)-1/2
г)1/2 ?
Найдем корни уравнения:
D = b^2 - 4ac =25-4*2*(-3)=49
х1,2=-b +/-корень из дискриминанта разделить на 2*а
х1=3
х2=-1/2
в)-1/2 этот ответ является корнем уравнения
г)1/2 этот ответ не является корнем уравнения
Объяснение:
log(3) (5 - 5x) >= log (3) (x^2 -3x + 2) + log (3) (x+4)
log(a) b ОДЗ a>0 b>0 a≠1
итак ищем ОДЗ тело логарифма больше 0
1. 5 - 5x > 0 x < 1
2. x^2 - 3x + 2 > 0
D = 9 - 8 = 1
x12=(3+-1)/2=2 1
(х - 1)(х - 2) > 0
x∈ (-∞ 1) U (2 +∞)
3. x + 4 > 0 x > -4
ОДЗ x∈(-4 1)
так как основание логарифма больше 1, поэтому знак не меняется
5 - 5x ≥ (x^2 - 3x + 2)/(x + 4)
5(1 - x) ≥ (x - 1)(x - 2)/(x + 4)
5(x - 1) + (x - 1)(x - 2)/(x + 4) ≤ 0
(x - 1)(5(x+4)+x-2)/(x+4) ≤ 0
(х - 1)(6x + 18 )/(x+4) ≤ 0
6(х - 1)(x + 3 )/(x+4) ≤ 0
применяем метод интервалов
(-4)[-3] [1]
x ∈(-∞ -4) U [-3 1] пересекаем с ОДЗ x∈(-4 1)
ответ x∈[-3 1)
х+3см-2 катет
Тогда по теореме Пифагора
х²+(х+3)²=24²
х²+х²+6х+9-576=0
2х²+6х-567=0
D=36+4536=4572
x1=(-6-6√127)/4<0 не удов усл
х2=-1,5+1,5√127-1 катет
-1,5+1,5√127+3=1,5+1,5√127-2 катет