1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
Sin 465 +
Cos 465 -
Cos 539 -
(-)×(+)×(-)×(-)= -