A*3^x - 12a + 4a^2 > 0 3^x > 0 при любом x ∈ R. Вынесем а за скобки. a*(3^x - 12 + 4a) > 0 1) При а = 0 будет 0 > 0 - этого не может быть ни при каком х. Решений нет. 2) При a < 0 будет 3^x + 4a - 12 < 0 3^x < 12 - 4a 12 - 4a > 0 при любом a < 0, 3^x > 0 при любом x, поэтому x < log3 (12 - 4a) 3) При a > 0 будет 3^x + 4a - 12 > 0 3^x > 12 - 4a = 4(3 - a) При a ∈ (0; 3) будет 4(3 - a) > 0, поэтому x > log3 (12 - 4a) При a >= 3 будет 4(3 - a) <= 0, поэтому 3^x > 4(3 - a) (отрицательного числа) при любом x. x ∈ R ответ: При a = 0 решений нет. При a ∈ (-oo; 0) x ∈ (-oo; log3 (12-4a)) При a ∈ (0; 3) x ∈ (log3 (12-4a); +oo). При a ∈ [3; +oo) x ∈ (-oo; +oo)
Найдем значения Х, которые обращают подмодульные выражения в ноль: 1)x^2-2x-15=0 ОДЗ:6x-27>0;x>4,5 x1=-3; x2=5 2)x^2-8x+12=0 x1=-2; x2=6 Отметим эти точки на числовой прямой:
-3-256
Точки разбивают числовую ось на 5 промежутков. Рассмотрим каждый: 1)x<-3 Первое подмодульное выражение отрицательно на этом промежутке, и его мы раскроем со сменой знака. Второе - положительно. Его раскроем без смены знака: -x^2+2x+15+x^2-8x+12=6x-27 x=4,5 - число не принадлежит данному промежутку 2)-3<=x<-2 Подмодульные выражения мы раскроем также как и в первом случае и получим х=4,5. Этот корень также не принадлежит промежутку. 3)-2<=X<5 Оба подмодульных выражения отрицательны: -x^2+2x+15-x^2+8x-12=6x-27 x1=-3; x2=5 - оба корня не принадлежат рассматриваемому числовому промежутку 4)5<=x<6 x^2-2x-15-x^2+8x-12=6x-27 6x-27=6x-27 Это значит, что все числа этого промежутка являются корнями уравнения. 5)x>=6 x^2-2x-15+x^2-8x+12=6x-27 x1=2; x2=6 Только х=6 принадлежит промежутку. Итак, у нас получилось два целых корня: 5 и 6. Их произведение =30.
Найдем значения Х, которые обнуляют подмодульные выражения: 4x-10=0; x=2,5 2x-14=0; x=7 Нанесем эти точки на числовую ось:
2,57
Эти точки разбивают числовую прямую на три промежутка.Рассмотрим все три случая: 1)x<2,5 На этом промежутке оба подмодульных выражения отрицательны, поэтому модули раскроем со сменой знака: [-4x+10+2x-14]/ (x+3)(x-6) <=0 (-2x-4)/(x+3)(x-6) <=0 -2(x+2) / (x+3)(x-6) <=0 (x+2)/(x+3)(x-6) >=0
-__(-3)__+[-2]___-(6)+
С учетом промежутка получаем: x e (-3; 2]
2)2,5<=x<7 Первый модуль раскроем без смены знака, а второй - со сменой знака: [4x-10+2x-14]/(x+3)(x-6) <=0 (6x-24)/(x+3)(x-6)<=0 6(x-4)/(x+3)(x-6)<=0 (x-4)/(x+3)(x-6)<=0
3^x > 0 при любом x ∈ R. Вынесем а за скобки.
a*(3^x - 12 + 4a) > 0
1) При а = 0 будет 0 > 0 - этого не может быть ни при каком х.
Решений нет.
2) При a < 0 будет
3^x + 4a - 12 < 0
3^x < 12 - 4a
12 - 4a > 0 при любом a < 0, 3^x > 0 при любом x, поэтому
x < log3 (12 - 4a)
3) При a > 0 будет
3^x + 4a - 12 > 0
3^x > 12 - 4a = 4(3 - a)
При a ∈ (0; 3) будет 4(3 - a) > 0, поэтому
x > log3 (12 - 4a)
При a >= 3 будет 4(3 - a) <= 0, поэтому
3^x > 4(3 - a) (отрицательного числа) при любом x.
x ∈ R
ответ: При a = 0 решений нет. При a ∈ (-oo; 0) x ∈ (-oo; log3 (12-4a))
При a ∈ (0; 3) x ∈ (log3 (12-4a); +oo). При a ∈ [3; +oo) x ∈ (-oo; +oo)