Рисуй картину: первое дерево АВ второе дерево параллельно первому ДС. Получаем прямоугольную трапецию АВСД ( углы Д=А=90*). Основания трапеции АВ= 12 м и ДС=7 м, высота ,( расстояние между деревьями) например , СН = 12 м. Найти боковую сторону ВС ( длину натянутой веревки между верхушками).
1) Так как трап прямоугольная по построению ( условию), то НВ=АВ-АН (АН=СД), НВ+12-7=5 м.
2) рассм треуг НСВ (угН=90*) по теор Пифагора СВ2=СН2+НВ2, где СВ2- это CВ в квадрате.
СВ2= 144+25, СВ2=169, СВ=13 м
Длина веревки 13 м
Экстремумы на отрезке находятся либо в стационарных точках (точках, где производная функции обращается в ноль), либо на концах отрезка.
Для этого сначала нужно найти производную функции. Если я правильно поняла запись Вашей функции и она такая
То ее производная равна -1/х^2
Критической точкой здесь будет х=0. Но наша функция в этой точке не существует. Значит экстремумы находятся на концах отрезка:
у(-1)=-4
у(1)=-2
Значит минимальное значение функция достигает в точке х=-1 и равна -4.
Максимальное значение функции на отрезке равно -2 и находится в точке х=1.
первый трехчлен x²-5x+6, остальные можно получить умножая на любые числа, например
2x²-10x+12
-x²+5x-6
т.д.
2) (x-2)(x-1/3)= x² - x/3 - 2x + 2/3=x² - 7x/3 + 2/3
x² - 7x/3 + 2/3
3x² - 7x + 2
6x² - 14x + 4
-3x² + 7x - 2