Поскольку левая и правая части уравнения принимают неотрицательные значения, то мы имеем право возвести в квадрат обе части уравнения, т.е. В левой части используем формулу разности квадратов, т.е. Произведение равно нулю, если хотя бы один из корней равен нулю, т.е. Это уравнение решений не имеет, т.к. левая часть уравнения принимает только положительные значения.
Скорость третьего Х отрывается все от временной точки, когда третий догонит второго (время t) (первый ехал на 1 час больше (t+1) третий на один час меньше (t-1), это когда 15*t=X*(t-1) (их пройденные пути выравняются) второе уравнение 21*(t+9+1)=X(t+9-1) итого система 15t=Xt-X -> 15t-Xt=-X -> t(15-X)=-X -> t=-X/(15-X) =X/(X-15) 21t+210=Xt+8X (во второе подставим t) 21X/(X-15)+210=(X^2)/(X-15)+8X избавляемся от знаменателя (Х-15) 21X +210(X-15)=X^2+8X(X-15) 21X+210X-3150=X^2+8X^2-120X все вправо 9x^2-351x+3150=0 (сократим на 9) x^2-39x+350=0
D=1521-1400=121 (корень 11) x1=(39+11)/2=25 x2=(39-11)/2=14 (заведомо неверный, поскольку его скорость явно выше скорости первого (21), раз он его догнал) итого Х=25 км/ч
Пусть скорость третьего велосипедиста x (км/ч), t – время, которое ему понадобилось, чтобы догнать второго. До встречи на трассе они проехали одинаковое расстояние. Известно, что второй ехал на 1 час больше. Составим таблицу:Таким образом, можем составить уравнение: До встречи на трассе третий и первый проехали одинаковое расстояние. Третий догнал первого через 2 часа 20 минут после того, как догнал второго, значит до встречи с первым третий затратил (t + 7/3) часов, а первый на этот момент уже находился в пути (2+t+7/3) часа, так как третий выехал через 2 часа после первого, догнал второго, затратив t часов, и ещё через 7/3 часа догнал первого:Таким образом, можем составить ещё одно уравнение:Решаем систему:Выразим t в первом уравнении и подставим во второе:Время есть величина положительная, поэтому t=2/3.Таким образом:Скорость третьего велосипедиста равна 25 (км/ч).ответ: 25
В левой части используем формулу разности квадратов, т.е.
Произведение равно нулю, если хотя бы один из корней равен нулю, т.е.
Это уравнение решений не имеет, т.к. левая часть уравнения принимает только положительные значения.
ответ: