ответ: а ∈ (1 ; 3)
Объяснение:
x² + (2a + 4)x + 8a + 1 ≤ 0
Левая часть выражения - квадратичная функция, графиком которой является парабола с ветвями, направленными вверх (коэффициент перед х² равен 1, положительный).
Неравенство не будет иметь решений, если парабола не будет пересекать ось Ох, т.е. квадратный трехчлен не будет иметь корней. А он не имеет корней, если дискриминант отрицательный.
Поэтому составим выражение для дискриминанта и решим неравенство D < 0.
D = (2a + 4)² - 4 · (8a + 1) = 4a² + 16a + 16 - 32a - 4 = 4a² - 16a + 12
4a² - 16a + 12 < 0
a² - 4a + 3 < 0
Решаем методом интервалов:
Найдем нули:
a² - 4a + 3 = 0
D/4 = 4 - 3 = 1
a₁ = 2 - 1 = 1
a₂ = 2 + 1 = 3
Отметим точки на координатной прямой (см. рисунок).
Решение неравенства а ∈ (1 ; 3).
4(1-cos²x)-4cosx-1=0
4-4cos²x-4cosx-1=0
4cos²x+4cosx-3=0
Пусть cosx=t, |t|≤1
4t²+4t-3=0
D=4²+4*4*3=64=8²
t₁=(-4+8)/8=1/2
t₂=(-4-8)/8=-1.5 <-1 не подходит по замене
cosx=1/2
x=+-π/6+2πn, n∈Z
2)sin²x-0.5*sin2x=0
sin²x-0.5*2sinx*cosx=0
sin²x-sinx*cosx=0
sinx(sinx-cosx)=0
sinx=0
x=πn, n∈Z
sinx-cosx=0 |:cosx
tgx-1=0
tgx=1
x=π/4+πn, n∈Z
3) sin2x+sin6x=cos2x
2sin((2x+6x)/2)*cos((6x-2x)/2)=cos2x
2sin4x*cos2x=cos2x
2sin4x*cos2x-cos2x=0
2cos2x(sin4x-0.5)=0
cos2x=0
2x=π/2+πn, n∈Z
x=π/4+π*n/2, n∈Z
sin4x=0.5
4x=(-1)ⁿ*π/6+πn, n∈Z
x=(-1)ⁿ*π/24+πn/4, n∈Z