М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
4uma4enko4
4uma4enko4
31.05.2023 00:21 •  Алгебра

Преобразуйте заданное выражение в многочлен стандартного вида: а) -2/3p^2q^2(6p^2-3/2pq+3q^2) б) (2-3p)(p+3) в) (-24pq^2+28p^2q) : (4pq)

👇
Ответ:
А) - 2/3 p²q²(6p² - 3/2 pq + 3q²) = -4p⁴q² + p³q³ - 2p²q⁴
б) (2-3р)(р+3) = 2р+6-3р²-9р = -3р²-7р+6
в) (-24pq²+28p²q) / 4pq = 4pq( -6q+7p) / 4pq = -6q+7p
4,6(74 оценок)
Ответ:
BlaBla552
BlaBla552
31.05.2023
Преобразуйте заданное выражение в многочлен стандартного вида: 
а) -2/3p^2q^2(6p^2-3/2pq+3q^2)
б) (2-3p)(p+3)
в) (-24pq^2+28p^2q) : (4pq)
4,8(95 оценок)
Открыть все ответы
Ответ:
ФКЗенит1
ФКЗенит1
31.05.2023

Объяснение:

К трем задачам по готовым рисункам заданы одинаковые вопросы. 1)Докажите, что ∆ АВС=∆ADC. 2) Является ли биссектрисой угла ВСD луч СА? (рис.1,3) 3) Докажите, что ∆ ВСF=∆ DCF (рис.1,3)

Рис.1 В четырехугольнике АВСD диагонали АС и ВD пересекаются в т.F под прямым углом. АВ=АD; угол ВАD=DАF.

1) В треугольнике ВАD стороны AB=AD ⇒ он равнобедренный; АF делит угол А поровну ( дано) ⇒AF– биссектриса и высота. Т.к. ∆ ВАD равнобедренный, то АF медиана. ВF=DF, угол BFC=90° ⇒ FC - медиана и высота треугольника ВСD, это признак равнобедренного треугольника, из чего следует СВ=СD. В ∆ АВС и ∆ ADC стороны АВ=AD; BC=DC, АС - общая. Эти треугольники равны по трем сторонам, т.е. по 3-му признаку равенства.

2) АС – медиана и высота равнобедренного треугольника, значит, и биссектриса его угла.

3) Из доказанного выше СВ=CD, BF=DF, СF общая, АС - биссектриса. ∆ ВСF=∆ DCF по 1-му признаку ( две стороны у угол между ними) и 3-м сторонам ( по 3-му признаку).

Рис.2. В четырехугольнике АВСD диагональ АС при пересечении двух противоположных сторон образует равные накрестлежащие углы САD=ACD=60°. => Если накрестлежащие углы при пересечении двух прямых секущей равны, эти прямые параллельны. => угол АСD=углу ВАС=30°. ∆ АВС=∆ АСD по стороне двум равным углам, прилежащим к ней (2-й признак равенства).

Рис.3. Диагональ АС четырехугольника АВСD делит его на треугольники со сторонами АВ=AD; CD=CB, АС - общая.

1) ∆ АВС и ADC равны по трем сторонам (3-й признак равенства).

2) Из п.1. следует < BCA= < DCA => АС - биссектриса угла ВС D.

3) В ∆ BCF и ∆ DCF стороны ВС=DC (дано), углы при вершине С равны (доказано), CF- общая. Эти треугольники равны по двум сторонам и углу между ними, т.е. по 1-му признаку равенства треугольников.

4,6(71 оценок)
Ответ:
Alinwhite
Alinwhite
31.05.2023

К трем задачам по готовым рисункам заданы одинаковые вопросы. 1)Докажите, что ∆ АВС=∆ADC.    2) Является ли биссектрисой угла ВСD луч СА? (рис.1,3)     3) Докажите, что ∆ ВСF=∆ DCF  (рис.1,3)

Рис.1 В четырехугольнике АВСD диагонали АС и ВD пересекаются в т.F под прямым углом. АВ=АD; угол ВАD=DАF.

1) В треугольнике ВАD стороны AB=AD ⇒ он равнобедренный; АF  делит угол А поровну ( дано) ⇒AF– биссектриса и высота. Т.к. ∆ ВАD равнобедренный, то АF медиана. ВF=DF, угол BFC=90° ⇒ FC  - медиана и высота треугольника ВСD, это признак равнобедренного треугольника, из чего следует СВ=СD. В ∆ АВС и ∆ ADC стороны АВ=AD; BC=DC, АС - общая. Эти треугольники равны по трем сторонам, т.е. по 3-му признаку равенства.

2) АС – медиана и высота равнобедренного треугольника, значит, и биссектриса его угла.

3) Из доказанного выше СВ=CD, BF=DF, СF общая, АС - биссектриса.  ∆ ВСF=∆ DCF по 1-му признаку ( две стороны у угол между ними) и  3-м сторонам ( по 3-му признаку).

Рис.2. В четырехугольнике АВСD диагональ АС при пересечении двух противоположных сторон образует равные накрестлежащие углы САD=ACD=60°. =>  Если накрестлежащие углы при пересечении двух прямых секущей равны, эти прямые параллельны. => угол АСD=углу ВАС=30°. ∆ АВС=∆ АСD по стороне двум равным углам, прилежащим к ней (2-й признак равенства).

Рис.3. Диагональ АС четырехугольника АВСD делит его на треугольники со сторонами АВ=AD; CD=CB, АС - общая.  

1) ∆ АВС и ADC равны по трем сторонам (3-й признак равенства).

2) Из п.1. следует < BCA= < DCA => АС - биссектриса угла ВС D.

3)  В ∆ BCF и ∆ DCF  стороны ВС=DC (дано), углы при вершине С равны (доказано), CF- общая. Эти треугольники равны по двум сторонам и углу между ними, т.е. по 1-му признаку равенства треугольников.

Объяснение:

4,4(91 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ