1.выписаны первые несколько членов прогрессии: -256; 128; - найдите сумму первых семи её членов. 2. прогрессия задана условием b1=-3, bn+1=6bn. найдите сумму первых её членов.
Скорость Время Расстояние Течение реки 1 км/ч Байдарка с гребцами х км/ч по течению (х+1)км/ч всего 6 км против течения (х-1) км/ч 4,5 ч 6 км
Составляем уравнение: 6 / (х+1) + 6 / (х-1) = 4,5 приводим к общему знаменателю (х+1)(х-1) и отбрасываем его, заметив, что х≠1 и х≠-1 6(х-1)+6(х+1)=4,5(х2-1) 6х-6+6х+6=4,5х2-4,5 4,5х2-12х-4,5=0 |*2/3 3х2-8х-3=0 Д=64+36=100 х(1)=(8+10)/6=3 (км/ч) скорость байдарки с гребцами х(2)=(8-10)/6 = -1/3 < 0 не подходит под условие задачи, скорость >0
Пускай скорость пассажирского поезда будет х км/ч. Тогда скорость товарного поезда будет х-20 км/ч. Время, за которое пассажирский поезд пройдёт 480 км, пусть будет у ч, тогда время товарного поезда будет у+4 ч. Имеем систему уравнений: х×у=480, (х-20)×(у+4)=480. х=480/у, ((480/у)-20)×(у+4)=480, ((480-20у)/у)×(у+4)=480, (480-20у)×(у+4)=480у, 480у+1920-20у^2-80у=480у, -20у^2-80у+1920=0, -у^2-4у+96=0, D=(-4)^2-4×(-1)×96=16+384=400, у1=(4-корень с 400)/(2×(-1))=(4-20)/(-2)=(-16)/(-2)=8, у2=(4+корень с 400)/(2×(-1))=(4+20)/(-2)=24/(-2)=-12. у2=-12 - не может быть ответом задачи, так как время не может быть отрицательным. Значит у=8, х=480/8=60. Имеем: скорость пассажирского поезда равна 60 км/ч, скорость товарно поезда равна 60-20=40 км/ч.