ответ:
d=b^2-4ac=(-1)^2-4*1*(-72)=1+288=\sqrt{289}
289
=17
х1=\frac{-b- \sqrt{d} }{2a} = \frac{1-17}{2} = \frac{-16}{2} =-8
2a
−b−
d
=
2
1−17
=
2
−16
=−8
х2=\frac{-b+ \sqrt{d} }{2a} = \frac{1+17}{2} = \frac{18}{2} = 9
2a
−b+
d
=
2
1+17
=
2
18
=9
ответ: -8 и 9
d=b^2-4ac=7^2-4*(-4)*(-3)=49-48=\sqrt{1} =1
1
=1
х1=\frac{-b- \sqrt{d} }{2a} = \frac{-7-1}{2*(-4)} = \frac{-8}{-8} =1
2a
−b−
d
=
2∗(−4)
−7−1
=
−8
−8
=1
х2=\frac{-b+ \sqrt{d} }{2a} = \frac{-7+1}{(-8)} = \frac{-6}{-8} =0,75
2a
−b+
d
=
(−8)
−7+1
=
−8
−6
=0,75
S1(б) = 2pi*r*h
Площадь полной поверхности - к боковой добавляются 2 основания.
S1(п) = 2pi*r*h + 2pi*r^2 = 2pi*r*(h + r)
Отношение S1(п)/S1(б) = 2pi*r*(h + r) / (2pi*r*h) = (h + r) / h = 5/3
Значит, h = 3x; r + h = 5x, отсюда r = 2x.
S1(п) = 2pi*2x*5x = 20pi*x^2
У 2 цилиндра радиус в 2 раза больше: R = 2r = 4x, а высота H = h = 3x.
Площадь полной поверхности 2 цилиндра
S2 = 2pi*R*(H + R) = 2pi*4x*(4x + 3x) = 2pi*4x*7x = 56pi*x^2
Отношение S2(п)/S1(п) = 56pi*x^2 / (20pi*x^2) = 56/20 = 14/5 = 2,8