АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
1) 96град = 96*П/180 = 8П/15 если угол был отрицательным, то -8П/15
2) 3П/10 = 3П/10*180/П = 54 град
3) 290 град - угол 4 четверти (sin<0)
70 град - угод 1четверти (cos>0)
100 град - угод 2 четверти (sin>0, cos<0, следовательно tg<0)
т.е "-" * "+" * "-" = "+" выражение >0
4) если cos<0 и сtg = cos/sin >0, значит sin<0
cos<0 и sin<0 в 3 четверти
5) -10П/7 = -10*180/7 = -257.14...
2 четверть
6) 7 + sin a
Наименьшее значение синуса =-1
7-1 = 6
7) кубич корень из (2sin(-1125) = кубич корень из [2sin(-360*3 - 45)] =
= кубич корень из [2sin(- 45)] = кубич корень из [-2*(2)^0.5/2] =
= кубич корень из [-(2)^0.5] = -2^(1/6)
2х=1315-165
х=1150/2
х=575
в январе 575
в феврале (х+165)=575+165=740