1. Длина площадки равна 15 м, ширина равна 7 м.
2. 3 упаковки.
Объяснение:
Площадь площадки равна 105 м².
1 сторона на 8 метров больше другой.
Бордюр в упаковках по 15 метров.
1. Вычислить значения сторон площадки,
2. Вычислить необходимое число упаковок для бордюра.
Решение.
1. Пусть одна сторона х м. Тогда вторая равна х+8 м.
S площадки равно х(х+8)=105 м².
х²+8х-105=0;
По теореме Виета
х1+х2=-8; х1*х2=-105;
х1= 7; х2= -15 --- не соответствует условию.
Одна сторона площадки равна 7 метров.
Вторая сторона равна 7+8=15 метров.
2. Периметр площадки равен
Р=2(а+b)=2(7+15)=44 метра
в одной упаковке 15 метров материала для бордюр.
Значит надо купить 44/15=2 14/15 упаковок
или, округленно, 3 упаковки
Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.
y'=x/4 -1/2; приравниваем к тангенсу угла наклона OB, равному 1/2:
x/4-1/2=1/2; x=4; y=16/8-4/2+6=6; A(4;6)
Осталось найти площадь. Из всех возможных выберем "самый школьный". Рисуем прямоугольник, внутри которого лежит наш треугольник, и отсекаем от него все лишнее. Прямоугольник ограничен осями координат, прямой x=6 и прямой y=6. Его площадь равна 36. Три "лишних" треугольника имеют площади
(1/2)·4·6=12; (1/2)·6·3=9; (1/2)·2·3=3, в сумме 24. Вычитая из 36 лишние 24, получаем ответ 12