Решение по методу Крамера.
x1 x2 x3 B
2 -1 2 3 Определитель
1 1 2 -4 -6
4 1 4 -3
Заменяем 1-й столбец на вектор результатов B:
3 -1 2
-4 1 2 Определитель
-3 1 4 -6
Заменяем 2-й столбец на вектор результатов B:
2 3 2
1 -4 2 Определитель
4 -3 4 18
Заменяем 3-й столбец на вектор результатов B:
2 -1 3
1 1 -4 Определитель
4 1 -3 6
x1= -6 / -6 = 1
x2= 18 / -6 = -3
x3= 6 / -6 = -1.
Определители проще находить методом "наклонных полосок".
Вот первый из них:
2 -1 2| 2 -1
1 1 2| 1 1
4 1 4| 4 1
2 1 4 + -1 2 4 + 2 1 1 -
-1 1 4 - 2 2 1 - 2 1 4 =
= 8 + -8 + 2 - -4 - 4 - 8 = -6
Возможный вывод: d
36 + x2
Используйте частное правило
d
dx dr, где u = x и v = x2 + 36:
(36+x2)( -00) - ((36+ x2)) dx (36 + x2)2
Производная от x равна 1:
-х( (36+х2))+ 1 (36+ x2) x2)
(36 + x2)2
Упростите выражение:
36 + x2 - ( 4 (36+х2))
(36 + x2)2
Дифференцируйте сумму термин за термином:
36 + x2 - (36) + (x2)
(36 + x2)
Производная от 36 равна нулю:
36+x2-x(4 (x2) + 0)
(36 + x2)2
Упростите выражение:
(40+)
(36 + x2)2
Используйте правило мощности, --- (x") = n.x" 1, где = 2.
dx
(x2) = 2x:
36+x?-2xx
(36 + x2)2
Упростите выражение:
36 - x2
(36 + x2)2
Приводим обе части к общему знаменателю, затем знаменатель правой дроби поднимаем в числитель левой, а знаменатель левой - в числитель правой.
(x-2)(x+2)((x-3)(x+1) + (x+3)(x-1)) = ((x+6)(x-2)+(x-6)(x+2)(x+1)(x-1)
(x^2-4)((x-3)(x+1) + (x+3)(x-1)) = ((x+6)(x-2) + (x-6)(x+2)(x^2-1)
(x^2-4)(x^2-2x-3 + x^2+2x-3) = (x^2+4x-12 + x^2-4x -12)(x^2-1)
(x^2-4)(2x^2-6) = (2x^2-24)(x^2-1)
2(x^2-4)(x^2-3) = 2(x^2-12)(x^2-1)
x^4-7x^2+12 = x^4 -13x^2 +12
x^4-7x^2+12 -x^4 +13x^2 -12 = 0
6x^2 = 0
x^2 = 0
x = 0