Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
Пусть х км/ч - скорость течения реки, составим таблицу: Скорость Время Расстояние по течению 18+х (км/ч) всего 80 км против теч 18-х (км/ч) 9 ч 80 км По времени в пути составляем уравнение: 80 /(18+х) + 80/(18-х) = 9 приводим к обще знаменателю: (18-х)(18+х) и отбратываем его, заметив, что х≠18, х≠-18, получаем: 80(18-х)+80(18+х)=9(324-х²) 1440 - 80х+1440+80х-2916+9х²=0 9х²=-1440-1440+2916 9х² = 36 х² = 4 х=2 (км/ч) - скорость течения реки х=-2 не подходит под условие задачи, скорость>0