ответ: 1) 3 и 9; 2) 15 и 40.
Объяснение:
1) Сумма 12, разность 6
Так как разность двух чисел равна 6, то уменьшаемое (1 число) больше вычитаемого (2 число) на 6. Значит 1 число можно представить как сумму 2 числа и 6.
Тогда, если сложить эти два числа, то мы получим сумму удвоенного 2 числа и 6, что равно 12. Откуда 2 число в два раза меньше разности 12 и 6, то есть оно равно 3. Чтобы при сложении двух чисел (1 числа и 3) получилось 12, второе слагаемое (1 число) должно быть равно 9.
Алгебраическая запись:
Пусть a -- второе число, тогда a+6 -- первое число. Составим уравнение, используя условие суммы:
a + (a + 6) = 12
2a + 6 = 12
2a = 6
a = 3 -- второе число
a + 6 = 3 + 6 = 9 -- первое число
2) Сумма 55, разность 25
Так как разность двух чисел равна 25, то уменьшаемое (1 число) больше вычитаемого (2 число) на 25. Значит 1 число можно представить как сумму 2 числа и 25.
Тогда, если сложить эти два числа, то мы получим сумму удвоенного 2 числа и 25, что равно 55. Откуда 2 число в два раза меньше разности 55 и 25, то есть оно равно 15. Чтобы при сложении двух чисел (1 числа и 15) получилось 55, второе слагаемое (1 число) должно быть равно 40.
Алгебраическая запись:
Пусть a -- второе число, тогда a+25 -- первое число. Составим уравнение, используя условие суммы:
a + (a + 25) = 55
2a + 25 = 55
2a = 30
a = 15 -- второе число
а + 25 = 15 + 25 = 40 -- первое число
( x^2 - y^2 ) / xy = 5/6
X и у не равны 0
6( х^2 - у^2 ) = 5ху
Х + у = 5
Х = 5 - у
6( ( 5 - у )^2 - у^2 ) = 5( 5 - у )
6( 25 - 10у + у^2 - у^2 ) = 25 - 5у
6( 25 - 10у ) = 25 - 5у
150 - 60у = 25 - 5у
55у = 125
у = 125/55 = 25/11 = 2 3/11
Х = 4 5/5 - 2 3/11 = 4 55/55 - 2 15/55 = 2 40/55 = 2 8/11
ответ ( 2 8/11 ; 2 3/11 )