

![t+\frac{1}{t-1}-3 \leq 0\; ,\; \; \; \frac{t^2-t+1-3(t-1)}{t-1} \leq 0\; ,\; \; \frac{t^2-4t+4}{t-1} \leq 0\\\\ \frac{(t-2)^2}{t-1} \leq 0\; \; \; ---(1)+++[2]++++\\\\t\ \textless \ 1\; \; \to \; \; \; log_{x}(1-2x)\ \textless \ 1\; ,\\\\log_{x}(1-2x)\ \textless \ log_{x}\, x\; \; \Leftrightarrow \; \; \; (x-1)(1-2x-x)\ \textless \ 0\\\\(x-1)(1-3x)\ \textless \ 0\; ,\; \; (x-1)(3x-1)\ \textgreater \ 0\\\\+++(\frac{1}{3})---(1)+++\\\\x\in (-\infty ,\frac{1}{3})\cup (1,+\infty )\\\\ \left \{ {{x\in (0,\frac{1}{3})\cup (\frac{1}{3},\frac{1}{2})} \atop {x\in (-\infty ,\frac{1}{3})\cup (1,+\infty )} \right.](/tpl/images/0720/2938/7d7a0.png)
Пересечение: А∩В=общие числа А и В={-2;-1;0;1;2}
В∩С=общие числа В и С={-2;-1;0;1;2;3;4}
А∩С=общие числа А и С={-4;-3;-2;-1;0;1;2}.
Объединение: А∪В=все числа и А и В={-4;-3;-2;-1;0;1;2;3;4}
В∪С=все числа и В и С={-4;-3;-2;-1;0;1;2;3;4}
А∪С=все числа и А и С={-4;-3;-2;-1;0;1;2;3;4}.
Разность:А\В=числа из А, которых нет в В={-4;-3}
В\С=числа из В, которых нет в С=∅
А\С=числа из А, которых нет в С=∅.
Объяснение:
Пересечение: А∩В=общие числа А и В={-2;-1;0;1;2}
В∩С=общие числа В и С={-2;-1;0;1;2;3;4}
А∩С=общие числа А и С={-4;-3;-2;-1;0;1;2}.
Объединение: А∪В=все числа и А и В={-4;-3;-2;-1;0;1;2;3;4}
В∪С=все числа и В и С={-4;-3;-2;-1;0;1;2;3;4}
А∪С=все числа и А и С={-4;-3;-2;-1;0;1;2;3;4}.
Разность:А\В=числа из А, которых нет в В={-4;-3}
В\С=числа из В, которых нет в С=∅
А\С=числа из А, которых нет в С=∅.
Объяснение: