Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Поскольку кубик имеет 6 граней, при броске каждого кубика есть шесть возможных вариантов выпадения очков. если бросать два кубика одновременно, то количество разных вариантов выпадения очков на двух кубиках будет равно 6*6 = 36. теперь нам необходимо определить, какое количество вариантов соответствует случаю, когда сумма выпавших на двух кубиков очков будет равна 6. переберем все такие возможности: 1) 1 кубик - 1, 2 кубик - 5; 2) 1 кубик - 2, 2 кубик - 4; 3) 1 кубик - 3, 2 кубик - 3; 4) 1 кубик - 4, 2 кубик - 2; 5) 1 кубик - 5, 2 кубик - 1. всего таких вариантов 5, а общее число вариантов выпадения очков на двух кубиках равно 36, следовательно, вероятность того что при броске двух кубиков сумма выпавших очков будет равна 6 составит 5/36. ответ: искомая вероятность 5/36