Так как равенство (1) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба суммы. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество.
(5y 3+2z) 3 = 125y 9+150y 6z +60y 3z 2+8z 3 . (2)
Поэтому формула куба суммы читается так:
куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения на квадрат второго, плюс куб второго выражения.
При любых значениях a и b верно равенство
(a−b) 3 = a 3−3a 2b+3ab 2−b 3 . (3)
Доказательство.
(a−b) 3 = (a−b)(a 2−2ab+b 2) =
= a 3−2a 2b+ab 2 − a 2b+2ab 2−b 3 =
= a 3−3a 2b+3ab 2−b 3
Так как равенство (3) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба разности. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество.
(5y 3−2z) 3 = 125y 9−150y 6z +60y 3z 2−8z 3 . (4)
Поэтому формула куба разности читается так:
куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения и квадрата второго, минус куб второго выражения.
Теперь решаем:
k² + 5k + 16 - k³ = (1/9)² + 5 * (1/9) + 16 - (1/9)² = 1/81 + 5/9 + 16 - 1/729 = 12077/729 = 16 целых 413/729.
И я сейчас пришлю другой решения.