1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.
D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.
2) Найди корни квадратного уравнения x²+7x+12=0.
По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.
3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.
Рациональным будет метод введения новой переменной.
Пусть 5x−15 = t, тогда имеем:
2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1
t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.
Возвращаемся к замене:
5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.
5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.
ответ: 3,4; 3,3.
4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.
x−2,1 = 0 или x−31 = 0.
х₁ = 2,1 х₂ = 31.
ответ: 2,1; 31.
5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).
Полученная дробь: (х - 4)/(х + 6).
6)Сократи дробь (5x²−32x+12)/(x³−216).
5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.
x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4
Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =
= (5x - 2)/(x² + 6x + 36).
7) Разложи на множители квадратный трехчлен x² + 8x + 15.
x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.
имеем, x² + 8x + 15 = (x + 3)(x + 5).
Пусть скорость второй машины х км/ч, тогда скорость первой (х+10) км/ч. Время первой машины 300/(х+10) ч, время второй машины 300/х ч. по условию задачи время первой машины на 1 ч меньше, составим уравнение:
300/x - 300/(x+10) = 1.300/x−300/(x+10)=1. . x\neq0, x\neq-10x≠0,x≠−10 ,
300x+3000-300x-x^2-10x=0300x+3000-300x-x^2-10x=0300x+3000−300x−x
2
−10x=0 x^2+10x-3000=0x
2
+10x−3000=0 D=100+12000=12100, x_{1}=-60, x_{2}=50.D=100+12000=12100,x
1
=−60,x
2
=50. . Первый корень не удовлетворяет условию задачи. Следовательно скорость второй машины = 50км/ч, а скорость первой машины = 60 км/ч.
(1+2+3+...+21)x+21·2+(3+6+9+...+63)=1659;
(21·22x)/2+42+3(1+2+3+...+21)=1659;
21·11x+3·21·11=1617;
3·7·11(x+3)=3·539;
7·11(x+3)=539;
11(x+3)=77;
x+3=7;
x=4
ответ: 4