М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MarinaFilimonova
MarinaFilimonova
12.07.2020 14:14 •  Алгебра

Доказать неравенство: а² + б² + 1 ≥ аб + а + б

👇
Ответ:
диана2263
диана2263
12.07.2020
A² + b² + 1 ≥ ab + a + b
a² + b² + 1 - ab - a - b ≥ 0
Чтобы доказать это неравенство, нужно преобразовать левую часть так, чтобы в ней стояла сумма квадратных двучленов:

0,5a² - a + 0,5 + 0,5b² - b + 0,5 + 0,5a² - ab + 0,5b² ≥ 0

0,5(a² - 2a + 1) + 0,5(b² - 2b + 1) + 0,5(a² - 2ab + b²) ≥ 0

(a² - 2a + 1) + (b² - 2b + 1) + (a² - 2a + b²) ≥ 0

(a - 1)² + (b - 1)² + (a - b)² ≥ 0
Таким образом, неравенство верно при любых a и b, т.к. сумма квадратов любых чисел есть число неотрицательное (большее или равное 0).
4,5(93 оценок)
Открыть все ответы
Ответ:

ответ:

объяснение:

здесь область допустимых значений состоит только из двух

под первым корнем квадратный трехчлен --парабола, ветви вверх:  

2x²-8x+6  ≥ 0 

x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)

решение: х  ∈ (-∞; 1] u [3; +∞) 

под вторым корнем квадратный трехчлен --парабола, ветви вниз:  

-x²+4x-3 ≥ 0 

x²-4x+3 ≤ 0 корни те же))

решение: х  ∈ [1; 3]

пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}

легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть   < 1-1 (меньше нуля)

остается х = 3:   √0 +  √0 < 3-1 это верно))

ответ: х=3

4,6(41 оценок)
Ответ:
njjk1
njjk1
12.07.2020

ответ:

объяснение:

здесь область допустимых значений состоит только из двух

под первым корнем квадратный трехчлен --парабола, ветви вверх:  

2x²-8x+6  ≥ 0 

x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)

решение: х  ∈ (-∞; 1] u [3; +∞) 

под вторым корнем квадратный трехчлен --парабола, ветви вниз:  

-x²+4x-3 ≥ 0 

x²-4x+3 ≤ 0 корни те же))

решение: х  ∈ [1; 3]

пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}

легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть   < 1-1 (меньше нуля)

остается х = 3:   √0 +  √0 < 3-1 это верно))

ответ: х=3

4,4(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ