М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anglichanin228
Anglichanin228
30.04.2022 04:48 •  Алгебра

Доказать, что при a> 0

(a³+ b^6) / 2 ≥ 3ab² - 4

👇
Ответ:
elenafilatova11
elenafilatova11
30.04.2022

$ \frac{a^3+b^6}{2}\geq 3ab^2-4;

Вспоминаем неравенство Коши

$\frac{a+b}{2}\geq \sqrt{ab}

Применяем:

$\frac{a^3+b^6}{2}\geq \sqrt{a^3b^6}=|ab|^3\sqrt{a}=a|b|^3\sqrt{a}, (a0)

Покажем, что правое выражение здесь не меньше правого выражения в исходном неравенстве, тогда правое выражение в исходном неравенстве тем более будет не меньше, чем левое в исходном.

Это как если надо доказать, что a>b, мы доказали, что при a>c выполняется c>b, то точно a>b (транзитивность неравенств).

Делаем это:

a|b|^3\sqrt{a}\geq 3ab^2-4; a|b|^3\sqrt{a}-3ab^2+4\geq 0; ab^2(|b|\sqrt{a}-3)+4\geq 0

Это неравенство аналогично неравенству t^2(t-3)+4\geq 0; t=|b|\sqrt{a}, t0

Чтобы решить это неравенство, надо найти нули функции

f(t)=t^3-3t^2+4;, здесь сумма коэффициентов при нечетных степенях (1) равна сумме коэффициентов при нечетных степенях (-3+4=1), значит, t=-1 - корень. Поделив уголком на t+1 или по схеме Горнера, получим разложение t^3-3t^2+4=(t+1)(t^2-4t+4)=(t+1)(t-2)^2

Теперь можно решать неравенство, при этом по методу интервалов, так как при t везде коэффициент равен 1, в самом правом промежутке будет "+", а в остальных случаях при переходе через нули будет чередоваться, кроме нулей четности, как здесь t=2 (2-я степень при скобке), знаки будут - + +

Тогда (t+1)(t-2)^2\geq 0 \Rightarrow t \in[-1;2]\cup[2;+\infty) \Rightarrow t \in [-1;+\infty)

Но мы рассматриваем только t>0, а там везде неравенство выполняется, значит, выполняется и неравенство ab^2(|b|\sqrt{a}-3)+4\geq 0, то есть $\left \{ {{a|b|^3\sqrt{a}=\sqrt{a^3b^6}\geq 3ab^2-4} \atop {\frac{a^3+b^6}{2}\geq \sqrt{a^3b^6} }} \right. \Rightarrow \frac{a^3+b^6}{2} \geq 3ab^2-4

Что и требовалось доказать (естественно, неравенство справедливо по условию с ограничением a>0)

4,7(61 оценок)
Открыть все ответы
Ответ:
vprasckowya
vprasckowya
30.04.2022

раз по условию задачи корни уравнения противоположны, то

 

(-b+корень из дискриминанта)/2a = - (-b-корень из дискриминанта)/2a

получается -b = b, следовательно b = 0

в нашем случае b это pp-9

pp-9=0, следовательно p = 3 или p = -3

допустим p = 3, тогда

6xx - 15 + 2 = 0

6xx = 13

x = +-корень из (13/6)

 

допустим p = -3, тогда

6xx + 15 + 2 = 0

6xx = -17

т.е. х получается комплексное число (я не знаю в каком сейчас классе их изучают)

 

значит скорей всего допустимое только p = 3, и х = +-корень из (13/6)

 
4,7(67 оценок)
Ответ:
Natalym2001
Natalym2001
30.04.2022

Сначала найдём значения параметра k. Приравняем оба графика, поскольку они пересекаются, а затем уже наложим дополнительные условия.

 

kx = -x² - 1

x² + kx + 1 = 0

Графики будут иметь одну общую точку тогда и только тогда, когда данное квадратное уравнение будет иметь 1 корень. Найдём те k, при которых данное квадратное уравнение имеет 1 корень. Если квадратное уравнение имеет 1 корень, то его дискриминант строго равен 0.

D = b² - 4ac = k² - 4

D = 0        k² - 4 = 0

                  k² = 4

                  k1 = 2; k2 = -2

Значит, при k = 2 и при k = -2 оба графика буцдут иметь ровно одну общую точку.

Теперь построим такие прямые. Надо построить y = -x² - 1 и прямые y = 2x, y = -2x. Скажу просто на всякий случай, что обе прямые будут симметричны относительно оси ox. Сейчас пришлю рисунок с построением(надеюсь, вы понимаете, как строятся эти прямые). Построение лишь приближённое и грубое, но видно, что обе прямые касаются параболы в какой-то точке, то есть фактически имеет с ней одну единственную точку.

4,8(69 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ