Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х. работая вместе, они сделали всю работу (равную 1) за 12 часов (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18х х² - 42х + 216 = 0 d = 42² - 4·216 = 900 √d = 30 х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! ) х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов
X³ + 2x² + 2x + 4 = 0 Пусть х = -2 (число, входящее в разложение свободного члена - 4) -8 + 8 - 4 + 4 = 0 Разделим x³ + 2x² + 2x + 4 на х + 2. Получится х² +2 Тогда x³ + 2x² + 2x + 4 = (х² + 2)(х + 2). Число 17 - простое, значит, один из множителей должен делиться на 17. Пусть второй множитель делиться на 17 без остатка. Наименьшее значение х при этом будет х = 15. Пусть теперь первый множитель делиться на 17. Возьмём наименьшее число, при котором х² + 2 при делении на 17 даёт 1. Это число 17. Но при х² + 2 = 17 х - не натуральное число, значит, данное число не подходит Следующее натуральное число - 34, при делении на 17 даёт 2. х² + 2 = 34 х² = 32 х - не натуральное число, значит, тоже не подходит Пусть это число - 51. х² + 2 = 51 х² = 49 х = 7 х - натуральное число, значит, 7 - наименьшее натуральное число, при котором данное выражение делится на 17. ответ: х = 7..
2b^2-4bc+c^2+8bc=2b^2+4bc+c^2
2b^2+4bc+c^2=2b^2+4bc+c^2