1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Пусть (х-2 ) будет скорость туриста из пункта А в пункт В х скорость туриста из пункта В в пункт С 15/(х-2) время ,за которое турист из А в В 16/х вркмя ,за которое прашел турист из В в С При передвижении из пункта В в пункт С турист затратил времени меньше на 30 минут.,т.е. 1/2 часа. 15/(х-2) - 16/х =1/2 30х-32х+64=х²-2х х²=64 х=+/-8 подходит для ответа только х=8 км/час. это скорость туриста из пункта В в С 8км/ч. - 2км/ч.=6км./ч скорость туриста из пункта А в В
∠ACH=180°-∠A-∠CHA (∠CHA=90° т.к. CH высота)
∠ACH=180°-90°-62°=28°
∠HCB=90°-∠ACH=90°-28°=62°