А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
1. Достраиваем исходный прямоугольный треугольник до прямоугольника. 2. Проводим вторую диагональ получившегося прямоугольника. 3. Получилось четыре одинаковых прямоугольных треугольника. 4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей. 5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника. 6. Площадь прямоугольника 8*5=40 см². 7. Площадь вписанного прямоугольника 40/4=10 см².
(1/a - 1/b)^2 +4/(ab)
(2000-1999)^2 +4*2000*1999= 1+15992000=15992001
(1/a - 1/b)^2 +4/(ab)= 1/a^2 -2/(ab) +1/b^2 +4/(ab)= 1/a^2 +2/(ab)+1/b^2=(1/a+1/b)^2=(2000+1999)^2=3999^2=15992001