М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
keti261
keti261
03.08.2022 14:36 •  Алгебра

Найдите max и min sina+sinb+sinc если a+b+c=180°. , с доказательством!

👇
Ответ:
знания2345
знания2345
03.08.2022
a+b+c=180^\circ\Rightarrow c = 180^\circ - a - b\\\sin a + \sin b + \sin c = \sin a + \sin b + \sin(180^\circ-a-b)=\\=\sin a + \sin b + \sin(180^\circ)\cos(a+b)-\cos(180^\circ)\sin(a+b)=\\=\sin a + \sin b + \sin (a + b)=2\sin({a+b\over 2})\cos({a-b\over2})+\sin(a+b)=\\=2\sin({a+b\over2})(\cos({a-b\over2})+\cos({a+b\over2}))=4\sin({a+b\over2})\cos({a\over2})\cos({b\over2})
Нам достаточно найти максимум при некоторых значениях a_1,\,b_1, а минимум будет иметь то же по модулю значения, но обратный знак (если есть некоторое максимальное значение при a_1,\,b_1, то взяв -a_1,\,-b_1 мы получим, что синус поменяет знак на противоположный, а косинусы сохранят знак. Если же у минимума модуль больше, чем у максимума, то также поменяем знак и получим новый максимум)
Теперь осталось найти максимум.

\sin(a)+\sin(b)+\sin(c)=2\sin({a+b\over2})\cos({a-b\over2})+\sin c\leq\\\leq2\sin({a+b\over2})+\sin(c)=2\cos({c\over2})+\sin c
Найдем наибольшее значение функции f(x)=2\cos({x\over2})+\sin x:
f'(x)=-\sin({x\over2})+\cos x\\f'(x)\ \textless \ 0\Rightarrow 1-2\sin^2{x\over2}-\sin{x\over2}\ \textless \ 0\\\sin ({x\over2})=t,\,|t|\leq1\\2t^2+t-1\ \textgreater \ 0\\2(t-{1\over2})(t+1)\ \textgreater \ 0\\t\in({1\over2};1)\Rightarrow {x\over2}\in({\pi\over6}+2\pi k;{5\pi\over6}+2\pi k),\,k\in\mathbb{Z}\\x\in({\pi\over3}+4\pi k;{5\pi\over3}+4\pi k),\,k\in\mathbb{Z}
На полученном интервале f(x) убывает. Кроме того, f(x) имеет период 4π.
Таким же образом приходим к интервалу на котором f(x) возрастает (просто меняем знак неравенства):
|t|\leq1\\2(t-{1\over2})(t+1)\ \textless \ 0\\t\in(-1;{1\over2})\Rightarrow {x\over2}\in(-{7\pi\over6}+2\pi k;{\pi\over6}+2\pi k),\,k\in\mathbb{Z}\\x\in(-{7\pi\over3}+4\pi k;{\pi\over3}+4\pi k),\,k\in\mathbb{Z}
Значит достаточно проверить значение в точках 
x={\pi\over3}+4\pi k,k\in\mathbb{Z}
Как нетрудно убедится, в этих точках
f(x)={3\sqrt3\over2}
Таким образом,
\sin a+\sin b+\sin c\leq{3\sqrt3\over2}
Но при a=b=c=60^\circ достигается это значение.

Значит максимальное значение: {3\sqrt3\over2}
Минимальное: -{3\sqrt3\over2}
4,7(84 оценок)
Открыть все ответы
Ответ:
рома1341
рома1341
03.08.2022

Получилось 11 бревен, из которых:

– три бревна имеют длину 1/7,

– по два бревна имеют длину 1/35, 2/35, 3/35, 4/35.

Объяснение:

Сначала посмотрим, какие распилы совпали (и совпали ли), потом посчитаем длину бревен. Только заметим, что 6 распилов делят бревно на 7 равных частей, а 4 распила – на 5 равных частей.

Если считать от левого края бревна, то:

1) Иван сделал распилы на расстоянии 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 длины бревна;

2) Петр сделал распилы на расстоянии 1/5, 2/5, 3/5, 4/5 длины бревна.

Совпадений нет, то есть Иван и Петр не пилили в одном и том же месте бревна. Всего сделали 10 распилов, поэтому получилось 11 брёвен.

Выпишем места распила, добавив к ним концы бревна, в порядке возрастания: 0, 1/7, 1/5, 2/7, 2/5, 3/7, 4/7, 3/5, 5/7, 4/5, 6/7, 1.

Посчитаем получившиеся размеры бревен (для этого необходимо из каждой следующей точки распила, начиная со второй, вычесть предыдущую): 1/7, 2/35, 3/35, 4/35, 1/35, 1/7, 1/35, 4/35, 3/35, 2/35, 1/7.

Итого получилось 11 бревен, из которых:

– три бревна имеют длину 1/7,

– по два бревна имеют длину 1/35, 2/35, 3/35, 4/35.


Иван и Петр договорились распилить бревно на несколько равных частей. Сначала пришел Иван и сделал 6
4,8(97 оценок)
Ответ:
toli4ka1337
toli4ka1337
03.08.2022
Строим прямую у=х-1
Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет
Проверим, какой из них принадлежит (0;0)
0-0≤1 - верно.
Значит условию удовлетворяет та часть, которой принадлежит точка (0;0)
См. рис. 1

2у²=1
у²=1/2
у=1/√2    или    у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы.
Проверяем точку (0;0)
1-2·0<0 - неверно.
Значит, условию удовлетворяет  плоскость хоу,из которой удалена полоса, содержащая точку (0;0).
См. рис.2

Системе
 x-y<=1;
1-2y²<0
удовлетворяет пересечение двух областей ( см. рис. 3)

Найдите на числовой окружности все точки с абсциссой или ординатой, удовл. заданному неравенству или
Найдите на числовой окружности все точки с абсциссой или ординатой, удовл. заданному неравенству или
Найдите на числовой окружности все точки с абсциссой или ординатой, удовл. заданному неравенству или
4,6(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ