48=2*3*7
42=2*2*3*2*2
1)уберем одинаковые
2)те что остались перемножим
3)в итоге получим 54
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
Всего "троек" может быть 7, 14, 21 и 28.
Всего "четвёрок" может быть 5, 10, 15, 20, 25, 30.
Известно, что "троек" больше, чем четвёрок и пятёрок, значит, троек не может быть больше 21, а "четвёрок" не может быть больше 10 (в противном случае оценок будет больше 30).
Пусть x "пятёрок", y "четвёрок", z "двоек":
1) "троек" 7, тогда сумма оценок
7*3+5x+4y+2z = 90
5x+4y+2z = 69
Очевидно, что из слагаемых 2, 4 и 5 невозможно получить сумму 69.
2) "троек" 14, тогда сумма оценок
14*3+5x+4y+2z = 90
5x+4y+2z = 48
48 можно получить путём сложения цифр 2, 4 и 5.
Пусть "четвёрок" 5, тогда сумма оценок
5x+4*5+2z = 48
5x+2z = 28
То есть нужно разделить сумму 28 между (30-14-5) = 11 "двойками" и "пятёрками", или
Итого получаем:
"пятёрок" - 2
"четвёрок" - 5
"троек" - 14
"двоек" - 9
48=6*8
42=6*7
6*8*7 делится как на 6*8 так и на 6*7, следовательно НОК = 336