М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
privet45
privet45
16.01.2020 16:51 •  Алгебра

1)9x²-x^6/x^5+x^7 : x⁴-3x²/x^9+x^7 2)n²-n⁴+n^6/1-n * n²-1/n^5-n^3+n выносите общий множитель и сократите

👇
Ответ:
BlaSta
BlaSta
16.01.2020
Решение смотрите в приложении
1)9x²-x^6/x^5+x^7 : x⁴-3x²/x^9+x^7 2)n²-n⁴+n^6/1-n * n²-1/n^5-n^3+n выносите общий множитель и сокра
4,8(82 оценок)
Открыть все ответы
Ответ:
AlexCairon5
AlexCairon5
16.01.2020
Доказательство проведем индукцией по n.
1) 17ⁿ - 1 кратно 16. При n = 1 кратность подтверждается: 17 - 1 = 16. Пусть кратность 16-ти сохраняется при произвольном n. Докажем, что она подтверждается и при n + 1. 17ⁿ⁺¹ - 1 = 17*17ⁿ + 1. Составим разность: 17ⁿ⁺¹ - 1 - (17ⁿ - 1) = 17ⁿ⁺¹ - 1 - 17ⁿ + 1 = 17*17ⁿ - 17ⁿ = 17ⁿ(17 - 1) = 16*17ⁿ. Получили, что разность 17ⁿ⁺¹ - 1 - (17ⁿ - 1) кратна 16. Т.к. слагаемое 17ⁿ - 1 также кратно 16 по предположению индукции, то и слагаемое 17ⁿ⁺¹ - 1 кратно 16, следовательно кратность доказана.

2) 23²ⁿ⁺¹ + 1 кратно 24. При n = 1 кратность подтверждается: 23³ + 1 = 12167 + 1 = 12168 = 24*507. Полагая, что имеет место кратность 23²ⁿ⁺¹ + 1 двадцати четырем, покажем, что и при n + 1 кратность подтверждается. 23²⁽ⁿ⁺¹⁾⁺¹ + 1 = 23²ⁿ⁺³ + 1. Составляем разность 23²ⁿ⁺³ + 1 - (23²ⁿ⁺¹ + 1) = 23²ⁿ⁺³ + 1 - 23²ⁿ⁺¹ - 1 = 23²ⁿ⁺¹*23² - 23²ⁿ⁺¹ = 23²ⁿ⁺¹(23² - 1) = 23²ⁿ⁺¹(23 - 1)(23 + 1)=22*24*23²ⁿ⁺¹. Видим, что эта разность кратна 24. Т. к. слагаемое 23²ⁿ⁺¹ + 1 кратно 24 по предположению индукции, то и 23²ⁿ⁺³ + 1 кратно 24, тем самым кратность доказана.

3) 13²ⁿ⁺¹ + 1 кратно 14. Действуя как в предыдущем пункте, получаем: при n = 1, 13³ + 1 = 2197 + 1 = 2198 = 14*157. Полагаем, что 13²ⁿ⁺¹ + 1 кратно 14 и доказываем кратность четырнадцати при n + 1. 13²⁽ⁿ⁺¹⁾⁺¹ + 1 = 13²ⁿ⁺³ + 1. Составляем разность 13²ⁿ⁺³ + 1 - (13²ⁿ⁺¹ + 1) = 13²ⁿ⁺³ - 13²ⁿ⁺¹ = 13²*13²ⁿ⁺¹ - 13²ⁿ⁺¹ = 13²ⁿ⁺¹(13² - 1) = 13²ⁿ⁺¹(13 - 1)(13 + 1) = 12*14*13²ⁿ⁺¹. Разность кратна 14, т. к. по предположению 13²ⁿ⁺¹ + 1 кратно 14, то и 13²ⁿ⁺³ + 1 кратно 14. Кратность доказана.
4,4(78 оценок)
Ответ:
andreymikilov
andreymikilov
16.01.2020
Можно было раскрыть модули по определению, но поступим несколько иначе. Найдём интервалы, где выражения под моудем меняют свои знаки.

x^2 + x = x(x+1) = 0 \\ \\ +: x \leq -1 \\ -: -1\ \textless \ x\ \textless \ 0 \\ +: x \geq 0 \\ \\ \\ 3x+3=3(x+1) \\ \\ -: x \leq -1 \\ +: x\ \textgreater \ -1

На основе этого выделяем три интервала:

1) (∞; -1]
В левой части под модулем выражение больше нуля, раскрываем модуль по определению: x² + x. В правой части под модулем отрицательное выражение, раскрываем модуль и получаем: (-3х - 3).
Решаем
x^2 +x = -3x-3 \\ \\ x^2+4x+3 = 0 \\ \\ x_1=-1; x_2 =-3
Подходят оба корня.

2) [-1; 0] В левой части под модулем выражение меньше нуля, значит, (-x² - x). В правой части выражение под модулем больше нуля, значит, (3x + 3).
Решаем
-x^2-x = 3x+3 \\ \\ x^2+4x+3=0 \\ \\ x_1=-1; x_2=-3
Здесь мы можем взять только один корень x = -1, который у нас уже есть.

3) [0; +∞] Оба выражения под модулем больше нуля, значит:
x^2 + x = 3x +3 \\ \\ x^2 -2x -3 =0 \\ \\ x_=-1; x_2 =3
Подходит один корень x = 3.

ответ: x = -3;  x = -1;  x = 3
4,4(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ