Все числа 1+a^k при нечетном k делятся на 1+а. Всего нечетных степеней 8 штук: 1, 3, 5, 7, 9, 11, 13. 15, поэтому чтобы оставшиеся были взаимно просты необходимо выкинуть как минимум 7 штук таких чисел.
Все числа 1+a^k при k∈{2, 6, 10, 14} делятся на 1+а², поэтому нужно выкинуть еще 3 числа.
Все числа 1+a^k при k∈{4,12} делятся на 1+а⁴, поэтому нужно выкинуть еще 1 число. Итак, останется не больше 15-7-3-1=4 чисел. Действительно, например при а=2, можно оставить 1+а, 1+а², 1+а⁴, 1+а⁸, т.е. 3, 5, 17, 257, которые взаимно просты. ответ: 4 числа.
Сначала переносишь единицу в левую сторону с противоположным знаком и тем самым приравниваешь к нулю. Потом находишь общий знаменатель:(х+1)(х+2)(х+4)(х-1). к первой дроби дополнительный множитель:(х-1)(х+4) ко второй:(х+1)(х+2) к единице все скобки получается:6х квадрат+24х-6х-24+8х квадрат+16х+8х+16-х в 4-ой степени+4х в кубе+х в кубе-4х квадат+2х в кубе-8х квадрат-2х квадарт+8х+х в кубе-4х квадарт-х квадарт+4х+2х квадрат-8х-2х+8 приводим подобные слагаемые:-х в 4-ой степени +8х в кубе-7х квадрат +44х/(х+1)(х+2)(х-1)(х+4) теперь умножаем на (-1) и меняем знаки на противоположные (в числителе) затем система, числитель равен нулю, а знаменатель не равен нулю