Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4)=7
Нам нужно найти при каких значениях а уравнение (а + 4)х = а - 3 не имеет корней.
Давайте сначала выразим из уравнения переменную х через а.
Разделим обе части уравнения на скобку (а + 4):
х = (а - 3)/(а + 4).
Рассмотрим полученное равенство.
В выражении стоящем в правой части равенства есть знак дроби ( иными словами деления).
Нам известно, что на ноль делить нельзя. Найдя те значения а которые обращают знаменатель в ноль и будут ответом на вопрос задания.
а + 4 = 0;
а = - 4.
При а = - 4 знаменатель дроби обращается в 0, следовательно уравнение не имеет корней.
ответ: б = -4.
(2a-1)/2 - (3a-3)/5 - a > 0
Умножаем все на 10, знак неравенства остается прежним.
10a - 5 - 6a + 6 - 10a > 0
-6a + 1 > 0
6a < 1
a < 1/6
б) x - (2x+3)/2 <= (x-1)/4
x - (2x+3)/2 - (x-1)/4 <= 0
Умножаем все на 4. Знак неравенства остается прежним.
4x - 2(2x+3) - (x-1) <= 0
4x - 4x - 6 - x + 1 <= 0
-x - 5 <= 0
x >= -5
в) (5x-1)/5 + (x+1)/2 <= x
(5x-1)/5 + (x+1)/2 - x <= 0
Умножаем все на 10. Знак остается прежним.
2(5x-1) + 5(x+1) - 10x <= 0
10x - 2 + 5x + 5 - 10x <= 0
5x + 3 <= 0
5x <= -3
x <= -3/5
г) (y-1)/2 - (2y+3)/8 - y > 2
(y-1)/2 - (2y+3)/8 - y - 2 > 0
Умножаем на 8. Знак остается.
4(y-1) - (2y+3) - 8y - 16 > 0
4y - 4 - 2y - 3 - 8y - 16 > 0
-6y - 23 > 0
6y < -23
y < -23/6