сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .
в случае квадратного уравнения формулы виета имеют вид:
значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.
. используя теорему виета, найти корни уравнения
решение. согласно теореме виета, имеем, что
подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения
и
ответ. корни уравнения ,
обратная теорема виета
если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.
. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.
решение. пусть искомое квадратное уравнение имеет вид:
тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:
тогда
то есть искомое уравнение
ответ.
общая формулировка теоремы виета
если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:
иначе говоря, произведение равно сумме всех возможных произведений из корней.
школьные знания.com
какой у тебя вопрос?
5 - 9 8+4 б
расстояние из а до в длиной 60 км мотоциклист проехал по шоссе , а обратно по по просёлочной дороге , которая короче шоссе на 5 км , уменьшив скорость на 10 км/ч. с какой скоростью ехал мотоциклист из а в в , если известно что на путь по просёлочной дороге он затратил на 6 мин больше , чем на путь по шоссе?
отметить нарушение vikaleft 05.02.2014
ответы и объяснения
neznackomka хорошист
y км.ч.-скорость на шоссе, (y-10)-на прос. дороге.длина участка ав- 60 км, тогда длина участка по просёлочной дороге равна 60-5=55км.
время,которое было затрачено на путь ав на 6мин(на 0,1 часа) меньше времени по прос. дороге.
время на участке ав равно 60/y. время по просёлочной дороге равно 55/(y-10). значит,60/y + 0.1=55/(y-10)
(-5y+600)*10=y^2-10y
y^2+40y-6000=0
d=1600+24000=25600
x=(-40+160)/2=60
ответ: 60
1) a) -1 <= cos(...) <= 1 - очевидно, что это необходимое и достаточное условие, тогда x = pi/4 +- arccos(2a - 7) + 2pi n
-1 <= 2a - 7 <= 1
6 <= 2a <= 8
3 <= a <= 4
б) котангенс может принимать любые значения, значит, единственное ограничение - это a - 1 >= 0, т.к. модуль неотрицателен.
a - 1 >= 0
a >= 1
2) а) Аналогично 1а), sin принимает значения от -1 до 1.
-1 <= a - 3 <= 1
2 <= a <= 4
При этих a можно записать
x/2 = (-1)^k arcsin(a - 3) + pi k
x = (-1)^k 2arcsin(a - 3) + 2pi k
ответ. при 2 <= a <= 4 x = (-1)^k 2arcsin(a - 3) + 2pi k; при остальных a решений нет.
б) |tg 2x| = 5a + 6
5a + 6 >= 0 - т.к. это значение модуля
a >= -6/5
При этих a левая и правая часть неотрицательны, возведем в квадрат:
tg 2x = +-(5a + 6)
2x = +-arctg(5a + 6) + pi k
x = +-arctg(5a + 6)/2 + pi k/2