Объяснение:
sin1845° можно представить как sin(1800°+45°)
Так как π=180°, то 1800°=10π, то есть sin(1800°+45°)=sin(10π+45°)
Дальше есть несколько путей нахождения необходимого значения. Во-первых, период синуса - 2π, то есть sin(2π+x)=sin(x), тогда sin(10π+45°)=sin(45°)=√2/2
Во-вторых, можно раскрыть по формуле синуса суммы:
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
sin(10π+45°)=sin(10π)cos(45°)+cos(10π)sin(45°)=0*√2/2+1*√2/2=√2/2
В-третьих, можно узнать значение функции с формул приведения. Так как аргумент отсчитывается от горизонтальной оси, смены функции на кофункцию (косинус) не будет; изначальная функция положительна (I четверть на тригонометрической окружности), поэтому знак будет тоже "+".
Задача 2:
2) В двух коробках b карандашей, причём в первой коробке в 4 раза больше...
(b -4) / 2
Задача 3:
3) В двух коробках c карандашей, причём во второй коробке на 12 карандашей...
Пусть x (карандашей) - в первой коробке, тогда во второй коробке (x - 12) (карандашей), по условию задачи всего C карандашей, составим уравнение:
x + (x - 12) = C
x + x - 12 = C
2x = C + 12 (если вопрос:"А ПОЧЕМУ СТАЛО С+12?", то знайте при переносе числа из одной стороны в другую знак меняется)
x = (C +12) / 2
и с лёгкостью находим икс
Задача 1:
1) Периметр прямоугольника 24 см, одна его сторона в 5 раз больше другой...
Пусть x - одна сторона, тогда 5*x другая сторона, по условию задачи известно что периметр их равен 24 ;общая формула периметра P = (a+b) * 2, составим уравенение:
( x + 5x ) * 2 = 24
2x + 10x = 24
12x = 24
x = 24 / 12
x = 2(см) (первую сторону нашли)
вторая сторона равна 5x, значит 5 * 2 = 10(см)
Формула площади a * b
2 * 10 = 20()
x²-17x +72 < 0 ⇔ x²- (8+9)x +8*9 < 0 ⇔ ( x- 8)(x -9) < 0 || обр. т. Виета ||неравенство решаем методом интервалов :
+ - +
(8) (9)
ответ : x ∈ ( 8; 9).
* * * ИЛИ (традиционно)* * *
трехчлен x² -17x +72 разложим на линейные множители a(x -x₁)(x -x₂) ,
для этого сначала решаем уравнение x² -17x +72 =0 и найдем его корни .
D = 17² - 4*1*72 = 289 -288 =1² ; √D =1.
x₁ =(17-1) / 2*1 = 16 / 2 =8.
x₂ =(17+1) / 2 = 18/2 =9.
x² -17x +72 =(x -8)(x-9)
x² -17x +72 < 0 ⇔(x -8)(x-9) < 0 ⇒ x ∈ (8; 9) .