Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как: В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как: В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай: 2 случай: 3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
y=√|2-x|-|2x+4| (под корнем все выражение)
y=√ ( |2-x| - |2x+4| ) ⇔ y = √ ( |x -2| - |2x+4| )
ООФ : |x -2| - |2x+4| ≥ 0 ⇔|2x+4| ≤ |2-x| ⇔ |2x+4|² ≤ |2-x|² ⇔
(2x+4 )² ≤ (2-x )² ⇔ (2x+4 )² - (2-x )² ≤ 0 ⇔ (2x+4 +2-x )(2x+4 -2+x ) ≤ 0 ⇔ 3(x+6) (x+2/3) ≤ 0 ⇒ x ∈ [ -6 ; -2/3] . Этот замкнутый интервал (отрезок)
содержит 6 целых чисел : { -6 ; -5 ; -4 ; -3 ; -2 ; -1} .
ответ : 6 целых чисел .
* * * P.S. * * *
( 2x+4 )² ≤ ( 2-x )² ⇔ 4x² +16x +16 ≤ 4 - 4x+x² ⇔3x² +20x +12 ≤ 0 ⇔
3(x +6) (x +2/3) ≤ 0 .
Для удобства проверки представим функцию в следующем виде :
y = √ ( |x -2 | - 2|x+2| )