Решение задачи с условием, что три последовательных числа - четные. (Ибо сумма любых трех последовательных чисел не кратна 6).
Пусть x (x∈N) - первое из трех последовательных четных чисел, тогда второе и третье равны x+2 и x+4 соответственно.
Запишем сумму x+x+2+x+4=3x+6=3(x+6)
По признаку делимости, число кратно 6, если оно кратно 2 и 3.
Очевидно, что 3(x+6) кратно трем, т.к. есть множитель 3. С учетом того, что x - четное число, можно заявить, что x+6 делится на 2, а значит все выражение кратно 6.
C^4 - 27C = C * ( C^3 - 27) = C * ( C - 3 ) * ( C^2 + 3C + 9)
25 - C^2 = ( 5 - C ) * ( 5 + C )
Y = 2X - 2 Графиком является прямая линия. Для построения достаточны две точки Точка С ( 0 ; - 2 ) и B ( 1 ; 0 ) Соединяем указанные точки. Это и есть график функции Y = 2X - 2 Проходит ли точка А ( - 10 ; - 20 ) через данный график? Y = 2X - 2 - 20 ≠ 2 * ( - 10) - 2 - 20 ≠ - 22 Равенство неверное, поэтому данная точка не проходит через указанный график
Решим каждое из уравнений.
D=81-4*8=81-32=49=7^2. x1=(-9+7)/2=-2/2=-1. x2=(-9-7)/2=-8
x^2+9x+8=(x+1)*(x+8)
D=64-4*3*5=6460=4=2^2
x1=(-8+2)/6=-1. x2=(-8-2)/6=-10/6=-5/3
3x^2+8x+5=3*(x+1)*(x+5/3)=(x+1)*(3x+5)
(x+1)*(x+8)/(x+1)*(3x+5)=x+8/3x+5