Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77. Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115 115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115 114-2=112 дробей несократимы
при а=-4/35 x=-(4+5*(-4/35))/(2*25/4*(-4/35))=2.4 решение не в интервале.
при а>-4/35 квадратичная функция имеет один корень из двух различных на интервале, если второй корень лежит вне отрезка и произведение значений функции на концах отрезка отрицательно. f(0)=a-4 f(-2)=16a-12 (a-4)*(16a-12)<0 a (3/4;4)
осталось проверить концы интервала по а а=4 x=0 и x=-24/25 оба корня в интервале. а=3/4 x=-2 x= 26/75 один корень в интервале.
9x^2 + 12x + 4 + 16x^2 - 1 = 25x^2 - 10x + 1
25x^2 + 12x + 3 = 25x^2 - 10x + 1
22x = - 2
X = - 1/11