1. Найдите двенадцатый член и сумму первых двенадцати членов арифметической прогрессии (an), если a1 = 3, a2 = 7.
2. Найдите седьмой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = − и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии 27, −9, 3, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.
5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.
Вариант 2
1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.
2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 = и q = 3.
3. Найдите сумму бесконечной геометрической прогрессии −64, 32, −16, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.
5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.
Вариант 3
1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.
2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = − и q = 5.
3. Найдите сумму бесконечной геометрической прогрессии −4, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.
5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.
Вариант 4
1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.
2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии −6, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.
5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.
Объяснение:
В красной коробке: жёлтый и синий
В зелёной коробке: красный и жёлтый
В синей коробке: зелёный и зелёный
В жёлтой коробке: красный и синий
Объяснение
КК, ЗК, СК, ЖК - коробки. (КК - красная коробка, ЗК - зелёная коробка и т.д)
(к, к), (к, з), ... - всевозможные неупорядоченные пары шариков. Например (к, с) - красный и синий шарик.
Изобразим графически "функцию из множества коробок в множество пар шариков", лол.
Если пара шариков лежит в коробке, то будем проводить от коробки стрелку к этой паре шариков. Например, если (к, с) лежит в синей коробки, то это будет выглядеть так:
СК -> (к, с)
По условию, в одной из коробок лежит (к, ж). Ясно, что точно не в синей, потому что там лежат шарики одинакового цвета. В красной и желтой эта пара тоже находится не может, из за первого условия задачи. Значит эта пара лежит в зелёной коробке.
К ->
З -> (к, ж)
С -> (x, x); x - неизвестный пока цвет.
Ж ->
Добьём красные и жёлтые шары. У нас остался 1 жёлтый шарик и 1 красный. Запихнуть их в синюю коробку не получится, отсюда ясно, что жёлтый лежит в красной, а красный в жёлтой.
К -> (ж, _)
З -> (к, ж)
С -> (x, x)
Ж -> (к, _)
Синие шарики мы не можем положить в синюю коробку, из за условия 1, а значит будет так:
К -> (ж, с)
З -> (к, ж)
С -> (x, x)
Ж -> (к, с)
Тогда в синей коробке лежат зелёные шары.
К -> (ж, с)
З -> (к, ж)
С -> (з, з)
Ж -> (к, с)