1. Вероятность достать два белых равна 6/25 * 6/25= 36/625 Вероятность достать два черных равна 19/25* 19/25 = 361/625. Значит вероятность достать шары одного цвета 397/625, а вероятность достать шары разных цветов 1 - 397/625 =228/625. можно рассуждать иначе: достать белый шар потом черный - вероятность 6/25 * 19/25, вероятность достать черный, потом белый 19/25 * 6/25. Складываем, получаем 228/625.
2. Достаем два белых - вероятность 6/25 * 5/24, вероятность достать два черных 19/25*18/24. Складываем. 30/600+342/600=372/600= 0,62.
3. Нужно ББ, БЧ, ЧБ. Вероятность 6/25*5/24 + 6/25*19/24 + 19/25*6/24= 258/600=0,43. Можно иначе Вероятность ЧЧ равна 19/25*18/25=342/600. 1-342/600=258/600=0,43.
Обозначим через x забор/час скорость покраски забора Игорем, за y забор/час – скорость покраски забора Пашей, и за z забор/час – скорость покраски забора Володей. Из задачи следует, что суммарная скорость покраски забора Игорем и Пашей составляет 1/10, то есть
.
Суммарная скорость покраски забора Пашей и Володей, равна , и суммарная скорость покраски забора Игорем и Володей, составляет . Получаем систему из трех уравнений:
Складывая все три уравнения, получаем
или в виде
,
то есть все втроем они покрасят забор за 9 часов, что составляет минут.
б) с³+d³-3cd(c+d) = (c+d)(с²-сd+d²)-3cd(c+d) = (c+d)((c²-cd+d²)-3cd) =
= (c+d)(c²-cd+d²-3cd) = (c+d)(c²-4cd+d²)
2. Пусть х - любое число, 2х - четное, 2х+1 - нечетное, 2х+3 - следующее нечетное. Тогда:
(2х+1)²-(2х+3)² = ((2х+1)-(2х+3))((2х+1)+(2х+3)) = (2х+1-2х-3)(2х+1+2х+3) =
= -2(4х+4) = -2*4(х+1) = -8(х+1)
-8(х+1) : 8 = -(х+1) чтд
3. 14⁴-165²+138²-107² = (196²-165²)+(138²-107²) =
= (196-165)(196+165)+(138-107)(138+107) = 31(196+165)+31(138+107) =
= 31((196+165)+(138+107))
31((196+165)+(138+107)) : 31 = ((196+165)+(138+107)) чтд