М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Решите неравенство: (1/7x-5/7)(x+2)< 0

👇
Ответ:
gjrdghhFafhj
gjrdghhFafhj
30.08.2020
Решение задания смотри на фотографии
Решите неравенство: (1/7x-5/7)(x+2)< 0
4,8(25 оценок)
Открыть все ответы
Ответ:
dinonafrie1488
dinonafrie1488
30.08.2020
Решите систему уравнений  {x² - y² =3 ;   x² + xy + y² = 7.

x ≠0 ,иначе получается   -y² =3  что не имеет действительных решений
(тоже y  ≠0 ,иначе получается  {x²  =3 ;   x²  = 7. не имеет  решений

{ x² -y² =3 ;  3(x² + xy + y² ) -7(x² -y²) =0 ⇔ { x² -y² =3 ; 10y² +3xy -4x² =0 ⇔
10y² +3xy -4x² =0   ⇔|| кв уравнения  отн y ||  [ (y = - (4/5)x  ; y=(1/2)x .

a) y = -(4/5)x
 x² -y² =3 ⇔ x² -(16/25)x² =3 ⇔ 9x² =75 ⇔ x =± (5√3) /3 
б) y =(1/2)x ⇔x² -(1/4)x² =3 ⇔3x² =4*3 ⇔  x =±2 .

ответ : (-2 ; -1) ; (2 ;1) ; (-(5√3) /3 ; -(4√3) /3 ) ;  ((5√3) /3 ; (4√3) /3 ).
4,6(88 оценок)
Ответ:
оля27102000
оля27102000
30.08.2020
Отыщем область значений указанной функции.
Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.

6 + 2 sin^{2} x - 6sin4x + cos2x + cos 8x = 6 + 1 - cos2x - 6sin4x + cos2x \\ + cos 8x = 7 - 6sin4x + cos8x = 7 - 6sin4x + 1 - 2 sin^{2} 4x = -2 sin^{2} 4x \\ - 6sin 4x + 8
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.

Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена.  Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
-2 t^{2} - 6t + 8
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии:
x_{0} = \frac{-b}{2a} = \frac{6}{-4} = -1,5. Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при t \ \textgreater \ -1,5. Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке [-1,1]. Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.

Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть,
y_{min} = -2 * 1 - 6 * 1 + 8 = 0 \\ y_{max} = -2 * (-1)^{2} - 6 * (-1) + 8 = 12, где y = -2 sin^{2} 4x - 6sin4x + 8.
То есть, E(y) = [0, 12].

А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт [0, \sqrt{12} ].
Теперь считаем, какие целые числа входят в полученную область значений.
0, 1, 2, 3 - и всё. Их ровно 4.
4,6(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ