В решении.
Объяснение:
1) Найти периметр прямоугольного треугольника, если один из его катетов на 23 см меньше второго катета и на 25 см меньше гипотенузы.
х - длина первого катета.
х + 23 - длина второго катета.
х + 25 - длина гипотенузы.
По теореме Пифагора:
(х + 25)² = х² + (х + 23)²
Раскрыть скобки:
х² + 50х + 625 = х² + х² + 46х + 529
Привести подобные члены:
х² + 50х + 625 - х² - х² - 46х - 529 = 0
-х² + 4х + 96 = 0/-1
х² - 4х - 96 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 16 + 384 = 400 √D= 20
х₁=(-b-√D)/2a
х₁=(4-20)/2
х₁= -16/2 = -8, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(4+20)/2
х₂=24/2
х₂=12 (см) - длина первого катета.
12+23=35 (см) - длина второго катета.
12+25=37 (см) - длина гипотенузы.
Проверка по теореме Пифагора:
12² + 35² = 144 + 1225 = 1369;
37² = 1369;
1369 = 1369, верно.
Р треугольника = 12 + 35 + 37 = 84 (см).
2) Утроенное натуральное число на 54 меньше своего квадрата. Найти натуральное число.
х - натуральное число.
По условию задачи уравнение:
х² - 3х = 54
х² - 3х - 54 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 9 + 216 = 225 √D=15
х₁=(-b-√D)/2a
х₁=(3-15)/2
х₁= -12/2 = -6, отбрасываем, как отрицательное.
х₂=(-b+√D)/2a
х₂=(3+15)/2
х₂=18/2
х₂=9 - натуральное число.
Проверка:
9² - 3*9 = 81 - 27 = 54, верно.
как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
значит не груш 250-150=100
Вероятность взять не грушу:
100/250=0,4