Всего шаров 8.
Вероятность извлечь первым белый шар равна 3/8, остаётся 7 шаров из них 2 белых. Вероятность извлечь второй белый шар 2/7. Вероятность что первый и второй белые шары
Р₁=3/8*2/7=6/56=0,11
Аналогично находим что оба шара черные
Р₂=5/8*4/7=20/56=0,36
Вероятность что оба шара одного цвета (или оба белые или оба черные)
Р=Р₁+Р₂=0,11+0,36=0,47
Вероятность что первый белый, а второй черный
Р₃=3/8*5/7=15/56=0,27
Вероятность что первый черный, а второй белый
Р₄=5/8*3/7=15/56=0,27
Вероятность что шары разного цвета
Р=Р₃+Р₄=0,27+0,27=0,54
ответ: более вероятно событие в) - шары разных цветов
Объяснение:
Если нужно выбрать верны утверждения, то это 2 и 4.
Смотрим, белый короче желтого, но длиннее синего.
Расположим шарфы в порядке уменьшения их длины, получаем:
Желтый, белый, синий. Читаем далее, черный не длиннее белого, следовательно, он может быть как равен по длине, так и меньше.
Тогда примерное расположение шарфов:
Желтый, белый, синий и черный(черный и синий могут меняться местами в зависимости от их длины)
Смотрим утверждение, 1 не верно, так как черный шарф может быть как равен по длине, так и меньше.
2 утверждение верно, так как читая условие делаем вывод, что желтый длиннее всех(см. выше).
3 утверждение не верно, так как в условии сказано, что белый шарф длиннее.
4 утверждение верно, так как желтый шарф самый длинный.